File size: 8,420 Bytes
a4ea705 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import os
from argparse import ArgumentParser
from omegaconf import OmegaConf
import torch
from torch.utils.data import DataLoader
from torchvision.utils import make_grid
from accelerate import Accelerator
from accelerate.utils import set_seed
from einops import rearrange
from tqdm import tqdm
from torch.utils.tensorboard import SummaryWriter
from PIL import Image, ImageDraw, ImageFont
import numpy as np
from model import ControlLDM, SwinIR, Diffusion
from utils.common import instantiate_from_config
from utils.sampler import SpacedSampler
def log_txt_as_img(wh, xc):
# wh a tuple of (width, height)
# xc a list of captions to plot
b = len(xc)
txts = list()
for bi in range(b):
txt = Image.new("RGB", wh, color="white")
draw = ImageDraw.Draw(txt)
# font = ImageFont.truetype('font/DejaVuSans.ttf', size=size)
font = ImageFont.load_default()
nc = int(40 * (wh[0] / 256))
lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc))
try:
draw.text((0, 0), lines, fill="black", font=font)
except UnicodeEncodeError:
print("Cant encode string for logging. Skipping.")
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
txts.append(txt)
txts = np.stack(txts)
txts = torch.tensor(txts)
return txts
def main(args) -> None:
# Setup accelerator:
accelerator = Accelerator(split_batches=True)
set_seed(231)
device = accelerator.device
cfg = OmegaConf.load(args.config)
# Setup an experiment folder:
if accelerator.is_local_main_process:
exp_dir = cfg.train.exp_dir
os.makedirs(exp_dir, exist_ok=True)
ckpt_dir = os.path.join(exp_dir, "checkpoints")
os.makedirs(ckpt_dir, exist_ok=True)
print(f"Experiment directory created at {exp_dir}")
# Create model:
cldm: ControlLDM = instantiate_from_config(cfg.model.cldm)
sd = torch.load(cfg.train.sd_path, map_location="cpu")["state_dict"]
unused = cldm.load_pretrained_sd(sd)
if accelerator.is_local_main_process:
print(f"strictly load pretrained SD weight from {cfg.train.sd_path}\n"
f"unused weights: {unused}")
if cfg.train.resume:
cldm.load_controlnet_from_ckpt(torch.load(cfg.train.resume, map_location="cpu"))
if accelerator.is_local_main_process:
print(f"strictly load controlnet weight from checkpoint: {cfg.train.resume}")
else:
init_with_new_zero, init_with_scratch = cldm.load_controlnet_from_unet()
if accelerator.is_local_main_process:
print(f"strictly load controlnet weight from pretrained SD\n"
f"weights initialized with newly added zeros: {init_with_new_zero}\n"
f"weights initialized from scratch: {init_with_scratch}")
swinir: SwinIR = instantiate_from_config(cfg.model.swinir)
sd = {
(k[len("module."):] if k.startswith("module.") else k): v
for k, v in torch.load(cfg.train.swinir_path, map_location="cpu").items()
}
swinir.load_state_dict(sd, strict=True)
for p in swinir.parameters():
p.requires_grad = False
if accelerator.is_local_main_process:
print(f"load SwinIR from {cfg.train.swinir_path}")
diffusion: Diffusion = instantiate_from_config(cfg.model.diffusion)
# Setup optimizer:
opt = torch.optim.AdamW(cldm.controlnet.parameters(), lr=cfg.train.learning_rate)
# Setup data:
dataset = instantiate_from_config(cfg.dataset.train)
loader = DataLoader(
dataset=dataset, batch_size=cfg.train.batch_size,
num_workers=cfg.train.num_workers,
shuffle=True, drop_last=True
)
if accelerator.is_local_main_process:
print(f"Dataset contains {len(dataset):,} images from {dataset.file_list}")
# Prepare models for training:
cldm.train().to(device)
swinir.eval().to(device)
diffusion.to(device)
cldm, opt, loader = accelerator.prepare(cldm, opt, loader)
pure_cldm: ControlLDM = accelerator.unwrap_model(cldm)
# Variables for monitoring/logging purposes:
global_step = 0
max_steps = cfg.train.train_steps
step_loss = []
epoch = 0
epoch_loss = []
sampler = SpacedSampler(diffusion.betas)
if accelerator.is_local_main_process:
writer = SummaryWriter(exp_dir)
print(f"Training for {max_steps} steps...")
while global_step < max_steps:
pbar = tqdm(iterable=None, disable=not accelerator.is_local_main_process, unit="batch", total=len(loader))
for gt, lq, prompt in loader:
gt = rearrange(gt, "b h w c -> b c h w").contiguous().float().to(device)
lq = rearrange(lq, "b h w c -> b c h w").contiguous().float().to(device)
with torch.no_grad():
z_0 = pure_cldm.vae_encode(gt)
clean = swinir(lq)
cond = pure_cldm.prepare_condition(clean, prompt)
t = torch.randint(0, diffusion.num_timesteps, (z_0.shape[0],), device=device)
loss = diffusion.p_losses(cldm, z_0, t, cond)
opt.zero_grad()
accelerator.backward(loss)
opt.step()
accelerator.wait_for_everyone()
global_step += 1
step_loss.append(loss.item())
epoch_loss.append(loss.item())
pbar.update(1)
pbar.set_description(f"Epoch: {epoch:04d}, Global Step: {global_step:07d}, Loss: {loss.item():.6f}")
# Log loss values:
if global_step % cfg.train.log_every == 0 and global_step > 0:
# Gather values from all processes
avg_loss = accelerator.gather(torch.tensor(step_loss, device=device).unsqueeze(0)).mean().item()
step_loss.clear()
if accelerator.is_local_main_process:
writer.add_scalar("loss/loss_simple_step", avg_loss, global_step)
# Save checkpoint:
if global_step % cfg.train.ckpt_every == 0 and global_step > 0:
if accelerator.is_local_main_process:
checkpoint = pure_cldm.controlnet.state_dict()
ckpt_path = f"{ckpt_dir}/{global_step:07d}.pt"
torch.save(checkpoint, ckpt_path)
if global_step % cfg.train.image_every == 0 or global_step == 1:
N = 12
log_clean = clean[:N]
log_cond = {k:v[:N] for k, v in cond.items()}
log_gt, log_lq = gt[:N], lq[:N]
log_prompt = prompt[:N]
cldm.eval()
with torch.no_grad():
z = sampler.sample(
model=cldm, device=device, steps=50, batch_size=len(log_gt), x_size=z_0.shape[1:],
cond=log_cond, uncond=None, cfg_scale=1.0, x_T=None,
progress=accelerator.is_local_main_process, progress_leave=False
)
if accelerator.is_local_main_process:
for tag, image in [
("image/samples", (pure_cldm.vae_decode(z) + 1) / 2),
("image/gt", (log_gt + 1) / 2),
("image/lq", log_lq),
("image/condition", log_clean),
("image/condition_decoded", (pure_cldm.vae_decode(log_cond["c_img"]) + 1) / 2),
("image/prompt", (log_txt_as_img((512, 512), log_prompt) + 1) / 2)
]:
writer.add_image(tag, make_grid(image, nrow=4), global_step)
cldm.train()
accelerator.wait_for_everyone()
if global_step == max_steps:
break
pbar.close()
epoch += 1
avg_epoch_loss = accelerator.gather(torch.tensor(epoch_loss, device=device).unsqueeze(0)).mean().item()
epoch_loss.clear()
if accelerator.is_local_main_process:
writer.add_scalar("loss/loss_simple_epoch", avg_epoch_loss, global_step)
if accelerator.is_local_main_process:
print("done!")
writer.close()
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--config", type=str, required=True)
args = parser.parse_args()
main(args)
|