File size: 8,418 Bytes
c46568a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
from typing import overload, Tuple, Optional

import torch
from torch import nn
from torch.nn import functional as F
import numpy as np
from PIL import Image
from einops import rearrange

from model.cldm import ControlLDM
from model.gaussian_diffusion import Diffusion
from model.bsrnet import RRDBNet
from model.swinir import SwinIR
from model.scunet import SCUNet
from utils.sampler import SpacedSampler
from utils.cond_fn import Guidance
from utils.common import wavelet_decomposition, wavelet_reconstruction, count_vram_usage


def bicubic_resize(img: np.ndarray, scale: float) -> np.ndarray:
    pil = Image.fromarray(img)
    res = pil.resize(tuple(int(x * scale) for x in pil.size), Image.BICUBIC)
    return np.array(res)


def resize_short_edge_to(imgs: torch.Tensor, size: int) -> torch.Tensor:
    _, _, h, w = imgs.size()
    if h == w:
        new_h, new_w = size, size
    elif h < w:
        new_h, new_w = size, int(w * (size / h))
    else:
        new_h, new_w = int(h * (size / w)), size
    return F.interpolate(imgs, size=(new_h, new_w), mode="bicubic", antialias=True)


def pad_to_multiples_of(imgs: torch.Tensor, multiple: int) -> torch.Tensor:
    _, _, h, w = imgs.size()
    if h % multiple == 0 and w % multiple == 0:
        return imgs.clone()
    # get_pad = lambda x: (x // multiple + 1) * multiple - x
    get_pad = lambda x: (x // multiple + int(x % multiple != 0)) * multiple - x
    ph, pw = get_pad(h), get_pad(w)
    return F.pad(imgs, pad=(0, pw, 0, ph), mode="constant", value=0)


class Pipeline:

    def __init__(self, stage1_model: nn.Module, cldm: ControlLDM, diffusion: Diffusion, cond_fn: Optional[Guidance], device: str) -> None:
        self.stage1_model = stage1_model
        self.cldm = cldm
        self.diffusion = diffusion
        self.cond_fn = cond_fn
        self.device = device
        self.final_size: Tuple[int] = None

    def set_final_size(self, lq: torch.Tensor) -> None:
        h, w = lq.shape[2:]
        self.final_size = (h, w)

    @overload
    def run_stage1(self, lq: torch.Tensor) -> torch.Tensor:
        ...

    @count_vram_usage
    def run_stage2(
        self,
        clean: torch.Tensor,
        steps: int,
        strength: float,
        tiled: bool,
        tile_size: int,
        tile_stride: int,
        pos_prompt: str,
        neg_prompt: str,
        cfg_scale: float,
        better_start: float
    ) -> torch.Tensor:
        ### preprocess
        bs, _, ori_h, ori_w = clean.shape
        # pad: ensure that height & width are multiples of 64
        pad_clean = pad_to_multiples_of(clean, multiple=64)
        h, w = pad_clean.shape[2:]
        # prepare conditon
        if not tiled:
            cond = self.cldm.prepare_condition(pad_clean, [pos_prompt] * bs)
            uncond = self.cldm.prepare_condition(pad_clean, [neg_prompt] * bs)
        else:
            cond = self.cldm.prepare_condition_tiled(pad_clean, [pos_prompt] * bs, tile_size, tile_stride)
            uncond = self.cldm.prepare_condition_tiled(pad_clean, [neg_prompt] * bs, tile_size, tile_stride)
        if self.cond_fn:
            self.cond_fn.load_target(pad_clean * 2 - 1)
        old_control_scales = self.cldm.control_scales
        self.cldm.control_scales = [strength] * 13
        if better_start:
            # using noised low frequency part of condition as a better start point of 
            # reverse sampling, which can prevent our model from generating noise in 
            # image background.
            _, low_freq = wavelet_decomposition(pad_clean)
            if not tiled:
                x_0 = self.cldm.vae_encode(low_freq)
            else:
                x_0 = self.cldm.vae_encode_tiled(low_freq, tile_size, tile_stride)
            x_T = self.diffusion.q_sample(
                x_0,
                torch.full((bs, ), self.diffusion.num_timesteps - 1, dtype=torch.long, device=self.device),
                torch.randn(x_0.shape, dtype=torch.float32, device=self.device)
            )
            # print(f"diffusion sqrt_alphas_cumprod: {self.diffusion.sqrt_alphas_cumprod[-1]}")
        else:
            x_T = torch.randn((bs, 4, h // 8, w // 8), dtype=torch.float32, device=self.device)
        ### run sampler
        sampler = SpacedSampler(self.diffusion.betas)
        z = sampler.sample(
            model=self.cldm, device=self.device, steps=steps, batch_size=bs, x_size=(4, h // 8, w // 8),
            cond=cond, uncond=uncond, cfg_scale=cfg_scale, x_T=x_T, progress=True,
            progress_leave=True, cond_fn=self.cond_fn, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride
        )
        if not tiled:
            x = self.cldm.vae_decode(z)
        else:
            x = self.cldm.vae_decode_tiled(z, tile_size // 8, tile_stride // 8)
        ### postprocess
        self.cldm.control_scales = old_control_scales
        sample = x[:, :, :ori_h, :ori_w]
        return sample

    @torch.no_grad()
    def run(
        self,
        lq: np.ndarray,
        steps: int,
        strength: float,
        tiled: bool,
        tile_size: int,
        tile_stride: int,
        pos_prompt: str,
        neg_prompt: str,
        cfg_scale: float,
        better_start: bool
    ) -> np.ndarray:
        # image to tensor
        lq = torch.tensor((lq / 255.).clip(0, 1), dtype=torch.float32, device=self.device)
        lq = rearrange(lq, "n h w c -> n c h w").contiguous()
        # set pipeline output size
        self.set_final_size(lq)
        clean = self.run_stage1(lq)
        sample = self.run_stage2(
            clean, steps, strength, tiled, tile_size, tile_stride,
            pos_prompt, neg_prompt, cfg_scale, better_start
        )
        # colorfix (borrowed from StableSR, thanks for their work)
        sample = (sample + 1) / 2
        sample = wavelet_reconstruction(sample, clean)
        # resize to desired output size
        sample = F.interpolate(sample, size=self.final_size, mode="bicubic", antialias=True)
        # tensor to image
        sample = rearrange(sample * 255., "n c h w -> n h w c")
        sample = sample.contiguous().clamp(0, 255).to(torch.uint8).cpu().numpy()
        return sample


class BSRNetPipeline(Pipeline):

    def __init__(self, bsrnet: RRDBNet, cldm: ControlLDM, diffusion: Diffusion, cond_fn: Optional[Guidance], device: str, upscale: float) -> None:
        super().__init__(bsrnet, cldm, diffusion, cond_fn, device)
        self.upscale = upscale

    def set_final_size(self, lq: torch.Tensor) -> None:
        h, w = lq.shape[2:]
        self.final_size = (int(h * self.upscale), int(w * self.upscale))

    @count_vram_usage
    def run_stage1(self, lq: torch.Tensor) -> torch.Tensor:
        # NOTE: upscale is always set to 4 in our experiments
        clean = self.stage1_model(lq)
        # if self.final_size[0] < 512 and self.final_size[1] < 512:
        if min(self.final_size) < 512:
            clean = resize_short_edge_to(clean, size=512)
        else:
            clean = F.interpolate(clean, size=self.final_size, mode="bicubic", antialias=True)
        return clean


class SwinIRPipeline(Pipeline):

    def __init__(self, swinir: SwinIR, cldm: ControlLDM, diffusion: Diffusion, cond_fn: Optional[Guidance], device: str) -> None:
        super().__init__(swinir, cldm, diffusion, cond_fn, device)

    @count_vram_usage
    def run_stage1(self, lq: torch.Tensor) -> torch.Tensor:
        # NOTE: lq size is always equal to 512 in our experiments
        # resize: ensure the input lq size is as least 512, since SwinIR is trained on 512 resolution
        if min(lq.shape[2:]) < 512:
            lq = resize_short_edge_to(lq, size=512)
        ori_h, ori_w = lq.shape[2:]
        # pad: ensure that height & width are multiples of 64
        pad_lq = pad_to_multiples_of(lq, multiple=64)
        # run
        clean = self.stage1_model(pad_lq)
        # remove padding
        clean = clean[:, :, :ori_h, :ori_w]
        return clean


class SCUNetPipeline(Pipeline):

    def __init__(self, scunet: SCUNet, cldm: ControlLDM, diffusion: Diffusion, cond_fn: Optional[Guidance], device: str) -> None:
        super().__init__(scunet, cldm, diffusion, cond_fn, device)

    @count_vram_usage
    def run_stage1(self, lq: torch.Tensor) -> torch.Tensor:
        clean = self.stage1_model(lq)
        if min(clean.shape[2:]) < 512:
            clean = resize_short_edge_to(clean, size=512)
        return clean