|
from typing import List |
|
import torch |
|
import torch.nn as nn |
|
from torch.utils.checkpoint import checkpoint |
|
from model.open_clip import CLIP, tokenize |
|
|
|
|
|
|
|
|
|
|
|
|
|
class FrozenOpenCLIPEmbedder(nn.Module): |
|
""" |
|
Uses the OpenCLIP transformer encoder for text |
|
""" |
|
LAYERS = [ |
|
|
|
"last", |
|
"penultimate" |
|
] |
|
def __init__(self, embed_dim, vision_cfg, text_cfg, layer="last"): |
|
super().__init__() |
|
assert layer in self.LAYERS |
|
|
|
model = CLIP(embed_dim, dict(vision_cfg), dict(text_cfg)) |
|
del model.visual |
|
self.model = model |
|
|
|
self.layer = layer |
|
if self.layer == "last": |
|
self.layer_idx = 0 |
|
elif self.layer == "penultimate": |
|
self.layer_idx = 1 |
|
else: |
|
raise NotImplementedError() |
|
|
|
def forward(self, tokens): |
|
z = self.encode_with_transformer(tokens) |
|
return z |
|
|
|
def encode_with_transformer(self, text): |
|
x = self.model.token_embedding(text) |
|
x = x + self.model.positional_embedding |
|
x = x.permute(1, 0, 2) |
|
x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask) |
|
x = x.permute(1, 0, 2) |
|
x = self.model.ln_final(x) |
|
return x |
|
|
|
def text_transformer_forward(self, x: torch.Tensor, attn_mask = None): |
|
for i, r in enumerate(self.model.transformer.resblocks): |
|
if i == len(self.model.transformer.resblocks) - self.layer_idx: |
|
break |
|
if self.model.transformer.grad_checkpointing and not torch.jit.is_scripting(): |
|
x = checkpoint(r, x, attn_mask) |
|
else: |
|
x = r(x, attn_mask=attn_mask) |
|
return x |
|
|
|
def encode(self, text: List[str]) -> torch.Tensor: |
|
|
|
tokens = tokenize(text) |
|
|
|
tokens = tokens.to(next(self.model.parameters()).device) |
|
return self(tokens) |
|
|