|
from typing import Mapping, Any, Tuple, Callable |
|
import importlib |
|
import os |
|
from urllib.parse import urlparse |
|
|
|
import torch |
|
from torch import Tensor |
|
from torch.nn import functional as F |
|
import numpy as np |
|
|
|
from torch.hub import download_url_to_file, get_dir |
|
|
|
|
|
def get_obj_from_str(string: str, reload: bool=False) -> Any: |
|
module, cls = string.rsplit(".", 1) |
|
if reload: |
|
module_imp = importlib.import_module(module) |
|
importlib.reload(module_imp) |
|
return getattr(importlib.import_module(module, package=None), cls) |
|
|
|
|
|
def instantiate_from_config(config: Mapping[str, Any]) -> Any: |
|
if not "target" in config: |
|
raise KeyError("Expected key `target` to instantiate.") |
|
return get_obj_from_str(config["target"])(**config.get("params", dict())) |
|
|
|
|
|
def wavelet_blur(image: Tensor, radius: int): |
|
""" |
|
Apply wavelet blur to the input tensor. |
|
""" |
|
|
|
|
|
kernel_vals = [ |
|
[0.0625, 0.125, 0.0625], |
|
[0.125, 0.25, 0.125], |
|
[0.0625, 0.125, 0.0625], |
|
] |
|
kernel = torch.tensor(kernel_vals, dtype=image.dtype, device=image.device) |
|
|
|
kernel = kernel[None, None] |
|
|
|
kernel = kernel.repeat(3, 1, 1, 1) |
|
image = F.pad(image, (radius, radius, radius, radius), mode='replicate') |
|
|
|
output = F.conv2d(image, kernel, groups=3, dilation=radius) |
|
return output |
|
|
|
|
|
def wavelet_decomposition(image: Tensor, levels=5): |
|
""" |
|
Apply wavelet decomposition to the input tensor. |
|
This function only returns the low frequency & the high frequency. |
|
""" |
|
high_freq = torch.zeros_like(image) |
|
for i in range(levels): |
|
radius = 2 ** i |
|
low_freq = wavelet_blur(image, radius) |
|
high_freq += (image - low_freq) |
|
image = low_freq |
|
|
|
return high_freq, low_freq |
|
|
|
|
|
def wavelet_reconstruction(content_feat:Tensor, style_feat:Tensor): |
|
""" |
|
Apply wavelet decomposition, so that the content will have the same color as the style. |
|
""" |
|
|
|
content_high_freq, content_low_freq = wavelet_decomposition(content_feat) |
|
del content_low_freq |
|
|
|
style_high_freq, style_low_freq = wavelet_decomposition(style_feat) |
|
del style_high_freq |
|
|
|
return content_high_freq + style_low_freq |
|
|
|
|
|
|
|
def load_file_from_url(url, model_dir=None, progress=True, file_name=None): |
|
"""Load file form http url, will download models if necessary. |
|
|
|
Ref:https://github.com/1adrianb/face-alignment/blob/master/face_alignment/utils.py |
|
|
|
Args: |
|
url (str): URL to be downloaded. |
|
model_dir (str): The path to save the downloaded model. Should be a full path. If None, use pytorch hub_dir. |
|
Default: None. |
|
progress (bool): Whether to show the download progress. Default: True. |
|
file_name (str): The downloaded file name. If None, use the file name in the url. Default: None. |
|
|
|
Returns: |
|
str: The path to the downloaded file. |
|
""" |
|
if model_dir is None: |
|
hub_dir = get_dir() |
|
model_dir = os.path.join(hub_dir, 'checkpoints') |
|
|
|
os.makedirs(model_dir, exist_ok=True) |
|
|
|
parts = urlparse(url) |
|
filename = os.path.basename(parts.path) |
|
if file_name is not None: |
|
filename = file_name |
|
cached_file = os.path.abspath(os.path.join(model_dir, filename)) |
|
if not os.path.exists(cached_file): |
|
print(f'Downloading: "{url}" to {cached_file}\n') |
|
download_url_to_file(url, cached_file, hash_prefix=None, progress=progress) |
|
return cached_file |
|
|
|
|
|
def sliding_windows(h: int, w: int, tile_size: int, tile_stride: int) -> Tuple[int, int, int, int]: |
|
hi_list = list(range(0, h - tile_size + 1, tile_stride)) |
|
if (h - tile_size) % tile_stride != 0: |
|
hi_list.append(h - tile_size) |
|
|
|
wi_list = list(range(0, w - tile_size + 1, tile_stride)) |
|
if (w - tile_size) % tile_stride != 0: |
|
wi_list.append(w - tile_size) |
|
|
|
coords = [] |
|
for hi in hi_list: |
|
for wi in wi_list: |
|
coords.append((hi, hi + tile_size, wi, wi + tile_size)) |
|
return coords |
|
|
|
|
|
|
|
def gaussian_weights(tile_width: int, tile_height: int) -> np.ndarray: |
|
"""Generates a gaussian mask of weights for tile contributions""" |
|
latent_width = tile_width |
|
latent_height = tile_height |
|
var = 0.01 |
|
midpoint = (latent_width - 1) / 2 |
|
x_probs = [ |
|
np.exp(-(x - midpoint) * (x - midpoint) / (latent_width * latent_width) / (2 * var)) / np.sqrt(2 * np.pi * var) |
|
for x in range(latent_width)] |
|
midpoint = latent_height / 2 |
|
y_probs = [ |
|
np.exp(-(y - midpoint) * (y - midpoint) / (latent_height * latent_height) / (2 * var)) / np.sqrt(2 * np.pi * var) |
|
for y in range(latent_height)] |
|
weights = np.outer(y_probs, x_probs) |
|
return weights |
|
|
|
|
|
COUNT_VRAM = bool(os.environ.get("COUNT_VRAM", False)) |
|
|
|
def count_vram_usage(func: Callable) -> Callable: |
|
if not COUNT_VRAM: |
|
return func |
|
|
|
def wrapper(*args, **kwargs): |
|
peak_before = torch.cuda.max_memory_allocated() / (1024 ** 3) |
|
ret = func(*args, **kwargs) |
|
torch.cuda.synchronize() |
|
peak_after = torch.cuda.max_memory_allocated() / (1024 ** 3) |
|
print(f"VRAM peak before {func.__name__}: {peak_before:.5f} GB, after: {peak_after:.5f} GB") |
|
return ret |
|
return wrapper |
|
|