|
from typing import overload, Tuple |
|
import torch |
|
from torch.nn import functional as F |
|
|
|
|
|
class Guidance: |
|
|
|
def __init__(self, scale: float, t_start: int, t_stop: int, space: str, repeat: int) -> "Guidance": |
|
""" |
|
Initialize restoration guidance. |
|
|
|
Args: |
|
scale (float): Gradient scale (denoted as `s` in our paper). The larger the gradient scale, |
|
the closer the final result will be to the output of the first stage model. |
|
t_start (int), t_stop (int): The timestep to start or stop guidance. Note that the sampling |
|
process starts from t=1000 to t=0, the `t_start` should be larger than `t_stop`. |
|
space (str): The data space for computing loss function (rgb or latent). |
|
|
|
Our restoration guidance is based on [GDP](https://github.com/Fayeben/GenerativeDiffusionPrior). |
|
Thanks for their work! |
|
""" |
|
self.scale = scale * 3000 |
|
self.t_start = t_start |
|
self.t_stop = t_stop |
|
self.target = None |
|
self.space = space |
|
self.repeat = repeat |
|
|
|
def load_target(self, target: torch.Tensor) -> None: |
|
self.target = target |
|
|
|
def __call__(self, target_x0: torch.Tensor, pred_x0: torch.Tensor, t: int) -> Tuple[torch.Tensor, float]: |
|
|
|
pred_x0 = pred_x0.detach().clone() |
|
target_x0 = target_x0.detach().clone() |
|
return self._forward(target_x0, pred_x0, t) |
|
|
|
@overload |
|
def _forward(self, target_x0: torch.Tensor, pred_x0: torch.Tensor, t: int) -> Tuple[torch.Tensor, float]: |
|
... |
|
|
|
|
|
class MSEGuidance(Guidance): |
|
|
|
def _forward(self, target_x0: torch.Tensor, pred_x0: torch.Tensor, t: int) -> Tuple[torch.Tensor, float]: |
|
|
|
with torch.enable_grad(): |
|
pred_x0.requires_grad_(True) |
|
loss = (pred_x0 - target_x0).pow(2).mean((1, 2, 3)).sum() |
|
scale = self.scale |
|
g = -torch.autograd.grad(loss, pred_x0)[0] * scale |
|
return g, loss.item() |
|
|
|
|
|
class WeightedMSEGuidance(Guidance): |
|
|
|
def _get_weight(self, target: torch.Tensor) -> torch.Tensor: |
|
|
|
rgb_to_gray_kernel = torch.tensor([0.2989, 0.5870, 0.1140]).view(1, 3, 1, 1) |
|
target = torch.sum(target * rgb_to_gray_kernel.to(target.device), dim=1, keepdim=True) |
|
|
|
G_x = [ |
|
[1, 0, -1], |
|
[2, 0, -2], |
|
[1, 0, -1] |
|
] |
|
G_y = [ |
|
[1, 2, 1], |
|
[0, 0, 0], |
|
[-1, -2, -1] |
|
] |
|
G_x = torch.tensor(G_x, dtype=target.dtype, device=target.device)[None] |
|
G_y = torch.tensor(G_y, dtype=target.dtype, device=target.device)[None] |
|
G = torch.stack((G_x, G_y)) |
|
|
|
target = F.pad(target, (1, 1, 1, 1), mode='replicate') |
|
grad = F.conv2d(target, G, stride=1) |
|
mag = grad.pow(2).sum(dim=1, keepdim=True).sqrt() |
|
|
|
n, c, h, w = mag.size() |
|
block_size = 2 |
|
blocks = mag.view(n, c, h // block_size, block_size, w // block_size, block_size).permute(0, 1, 2, 4, 3, 5).contiguous() |
|
block_mean = blocks.sum(dim=(-2, -1), keepdim=True).tanh().repeat(1, 1, 1, 1, block_size, block_size).permute(0, 1, 2, 4, 3, 5).contiguous() |
|
block_mean = block_mean.view(n, c, h, w) |
|
weight_map = 1 - block_mean |
|
|
|
return weight_map |
|
|
|
def _forward(self, target_x0: torch.Tensor, pred_x0: torch.Tensor, t: int) -> Tuple[torch.Tensor, float]: |
|
|
|
with torch.no_grad(): |
|
w = self._get_weight((target_x0 + 1) / 2) |
|
with torch.enable_grad(): |
|
pred_x0.requires_grad_(True) |
|
loss = ((pred_x0 - target_x0).pow(2) * w).mean((1, 2, 3)).sum() |
|
scale = self.scale |
|
g = -torch.autograd.grad(loss, pred_x0)[0] * scale |
|
return g, loss.item() |
|
|