MultivexAI commited on
Commit
5edc085
·
verified ·
1 Parent(s): 2dfd98e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +31 -3
README.md CHANGED
@@ -1,3 +1,31 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - regression
4
+ - pytorch
5
+ license: mit
6
+ ---
7
+
8
+ ## Model Description
9
+
10
+ `NumAdd-v2.0` is an optimized feed-forward neural network (FNN) in PyTorch for numerical sum prediction.
11
+ **Architecture:** 2-input, 1-output, with two hidden layers (32, 64 neurons) and ReLU activations.
12
+ **Parameters:** 2,273 trainable.
13
+ **Precision:** Requires `torch.float64` (double precision).
14
+ **Training Config:** Optimal batch size: 2048, Final tuning learning rate: 1.0e-12.
15
+
16
+ ## Evaluation
17
+
18
+ Benchmarked on 120,000 samples across six input magnitude ranges. Metrics: MAE, MSE, RMSE, R2.
19
+
20
+ | Range (Input Max) | MAE | MSE | RMSE | R2 |
21
+ |-------------------|---------|----------|---------|---------|
22
+ | 0-50 | 0.004 | 0.000 | 0.004 | 1.000 |
23
+ | 51-500 | 0.003 | 0.000 | 0.004 | 1.000 |
24
+ | 501-5000 | 0.004 | 0.000 | 0.004 | 1.000 |
25
+ | 5001-50000 | 0.004 | 0.000 | 0.005 | 1.000 |
26
+ | 50001-500000 | 0.010 | 0.001 | 0.028 | 1.000 |
27
+ | 500001-50000000 | 0.706 | 6.333 | 2.517 | 1.000 |
28
+
29
+ ## Limitations
30
+
31
+ Precision degrades for extremely large magnitude inputs (e.g., >500,000), indicated by increased MAE/MSE, although R2 remains high.