File size: 37,271 Bytes
12f772a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 |
import gradio as gr
import numpy as np
import cv2
import os
from PIL import Image, ImageFilter
import uuid
from scipy.interpolate import interp1d, PchipInterpolator
import torchvision
# from utils import *
import time
from tqdm import tqdm
import imageio
import torch
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
from einops import rearrange, repeat
from packaging import version
from accelerate.utils import set_seed
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from diffusers import AutoencoderKLTemporalDecoder, EulerDiscreteScheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from utils.flow_viz import flow_to_image
from utils.utils import split_filename, image2arr, image2pil, ensure_dirname
output_dir_video = "./outputs/videos"
output_dir_frame = "./outputs/frames"
ensure_dirname(output_dir_video)
ensure_dirname(output_dir_frame)
def divide_points_afterinterpolate(resized_all_points, motion_brush_mask):
k = resized_all_points.shape[0]
starts = resized_all_points[:, 0] # [K, 2]
in_masks = []
out_masks = []
for i in range(k):
x, y = int(starts[i][1]), int(starts[i][0])
if motion_brush_mask[x][y] == 255:
in_masks.append(resized_all_points[i])
else:
out_masks.append(resized_all_points[i])
in_masks = np.array(in_masks)
out_masks = np.array(out_masks)
return in_masks, out_masks
def get_sparseflow_and_mask_forward(
resized_all_points,
n_steps, H, W,
is_backward_flow=False
):
K = resized_all_points.shape[0]
starts = resized_all_points[:, 0] # [K, 2]
interpolated_ends = resized_all_points[:, 1:]
s_flow = np.zeros((K, n_steps, H, W, 2))
mask = np.zeros((K, n_steps, H, W))
for k in range(K):
for i in range(n_steps):
start, end = starts[k], interpolated_ends[k][i]
flow = np.int64(end - start) * (-1 if is_backward_flow is True else 1)
s_flow[k][i][int(start[1]), int(start[0])] = flow
mask[k][i][int(start[1]), int(start[0])] = 1
s_flow = np.sum(s_flow, axis=0)
mask = np.sum(mask, axis=0)
return s_flow, mask
def init_models(pretrained_model_name_or_path, resume_from_checkpoint, weight_dtype, device='cuda', enable_xformers_memory_efficient_attention=False, allow_tf32=False):
from models.unet_spatio_temporal_condition_controlnet import UNetSpatioTemporalConditionControlNetModel
from pipeline.pipeline import FlowControlNetPipeline
from models.svdxt_featureflow_forward_controlnet_s2d_fixcmp_norefine import FlowControlNet, CMP_demo
print('start loading models...')
# Load scheduler, tokenizer and models.
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
pretrained_model_name_or_path, subfolder="image_encoder", revision=None, variant="fp16"
)
vae = AutoencoderKLTemporalDecoder.from_pretrained(
pretrained_model_name_or_path, subfolder="vae", revision=None, variant="fp16")
unet = UNetSpatioTemporalConditionControlNetModel.from_pretrained(
pretrained_model_name_or_path,
subfolder="unet",
low_cpu_mem_usage=True,
variant="fp16",
)
controlnet = FlowControlNet.from_pretrained(resume_from_checkpoint)
cmp = CMP_demo(
'./models/cmp/experiments/semiauto_annot/resnet50_vip+mpii_liteflow/config.yaml',
42000
).to(device)
cmp.requires_grad_(False)
# Freeze vae and image_encoder
vae.requires_grad_(False)
image_encoder.requires_grad_(False)
unet.requires_grad_(False)
controlnet.requires_grad_(False)
# Move image_encoder and vae to gpu and cast to weight_dtype
image_encoder.to(device, dtype=weight_dtype)
vae.to(device, dtype=weight_dtype)
unet.to(device, dtype=weight_dtype)
controlnet.to(device, dtype=weight_dtype)
if enable_xformers_memory_efficient_attention:
if is_xformers_available():
import xformers
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
print(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError(
"xformers is not available. Make sure it is installed correctly")
if allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
pipeline = FlowControlNetPipeline.from_pretrained(
pretrained_model_name_or_path,
unet=unet,
controlnet=controlnet,
image_encoder=image_encoder,
vae=vae,
torch_dtype=weight_dtype,
)
pipeline = pipeline.to(device)
print('models loaded.')
return pipeline, cmp
def interpolate_trajectory(points, n_points):
x = [point[0] for point in points]
y = [point[1] for point in points]
t = np.linspace(0, 1, len(points))
fx = PchipInterpolator(t, x)
fy = PchipInterpolator(t, y)
new_t = np.linspace(0, 1, n_points)
new_x = fx(new_t)
new_y = fy(new_t)
new_points = list(zip(new_x, new_y))
return new_points
def visualize_drag_v2(background_image_path, splited_tracks, width, height):
trajectory_maps = []
background_image = Image.open(background_image_path).convert('RGBA')
background_image = background_image.resize((width, height))
w, h = background_image.size
transparent_background = np.array(background_image)
transparent_background[:, :, -1] = 128
transparent_background = Image.fromarray(transparent_background)
# Create a transparent layer with the same size as the background image
transparent_layer = np.zeros((h, w, 4))
for splited_track in splited_tracks:
if len(splited_track) > 1:
splited_track = interpolate_trajectory(splited_track, 16)
splited_track = splited_track[:16]
for i in range(len(splited_track)-1):
start_point = (int(splited_track[i][0]), int(splited_track[i][1]))
end_point = (int(splited_track[i+1][0]), int(splited_track[i+1][1]))
vx = end_point[0] - start_point[0]
vy = end_point[1] - start_point[1]
arrow_length = np.sqrt(vx**2 + vy**2)
if i == len(splited_track)-2:
cv2.arrowedLine(transparent_layer, start_point, end_point, (255, 0, 0, 192), 2, tipLength=8 / arrow_length)
else:
cv2.line(transparent_layer, start_point, end_point, (255, 0, 0, 192), 2)
else:
cv2.circle(transparent_layer, (int(splited_track[0][0]), int(splited_track[0][1])), 2, (255, 0, 0, 192), -1)
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
trajectory_maps.append(trajectory_map)
return trajectory_maps, transparent_layer
class Drag:
def __init__(self, device, height, width, model_length):
self.device = device
svd_ckpt = "ckpts/stable-video-diffusion-img2vid-xt-1-1"
mofa_ckpt = "ckpts/controlnet"
self.device = 'cuda'
self.weight_dtype = torch.float16
self.pipeline, self.cmp = init_models(
svd_ckpt,
mofa_ckpt,
weight_dtype=self.weight_dtype,
device=self.device
)
self.height = height
self.width = width
self.model_length = model_length
def get_cmp_flow(self, frames, sparse_optical_flow, mask, brush_mask=None):
'''
frames: [b, 13, 3, 384, 384] (0, 1) tensor
sparse_optical_flow: [b, 13, 2, 384, 384] (-384, 384) tensor
mask: [b, 13, 2, 384, 384] {0, 1} tensor
'''
b, t, c, h, w = frames.shape
assert h == 384 and w == 384
frames = frames.flatten(0, 1) # [b*13, 3, 256, 256]
sparse_optical_flow = sparse_optical_flow.flatten(0, 1) # [b*13, 2, 256, 256]
mask = mask.flatten(0, 1) # [b*13, 2, 256, 256]
cmp_flow = self.cmp.run(frames, sparse_optical_flow, mask) # [b*13, 2, 256, 256]
if brush_mask is not None:
brush_mask = torch.from_numpy(brush_mask) / 255.
brush_mask = brush_mask.to(cmp_flow.device, dtype=cmp_flow.dtype)
brush_mask = brush_mask.unsqueeze(0).unsqueeze(0)
cmp_flow = cmp_flow * brush_mask
cmp_flow = cmp_flow.reshape(b, t, 2, h, w)
return cmp_flow
def get_flow(self, pixel_values_384, sparse_optical_flow_384, mask_384, motion_brush_mask=None):
fb, fl, fc, _, _ = pixel_values_384.shape
controlnet_flow = self.get_cmp_flow(
pixel_values_384[:, 0:1, :, :, :].repeat(1, fl, 1, 1, 1),
sparse_optical_flow_384,
mask_384, motion_brush_mask
)
if self.height != 384 or self.width != 384:
scales = [self.height / 384, self.width / 384]
controlnet_flow = F.interpolate(controlnet_flow.flatten(0, 1), (self.height, self.width), mode='nearest').reshape(fb, fl, 2, self.height, self.width)
controlnet_flow[:, :, 0] *= scales[1]
controlnet_flow[:, :, 1] *= scales[0]
return controlnet_flow
@torch.no_grad()
def forward_sample(self, input_drag_384_inmask, input_drag_384_outmask, input_first_frame, input_mask_384_inmask, input_mask_384_outmask, in_mask_flag, out_mask_flag, motion_brush_mask=None, ctrl_scale=1., outputs=dict()):
'''
input_drag: [1, 13, 320, 576, 2]
input_drag_384: [1, 13, 384, 384, 2]
input_first_frame: [1, 3, 320, 576]
'''
seed = 42
num_frames = self.model_length
set_seed(seed)
input_first_frame_384 = F.interpolate(input_first_frame, (384, 384))
input_first_frame_384 = input_first_frame_384.repeat(num_frames - 1, 1, 1, 1).unsqueeze(0)
input_first_frame_pil = Image.fromarray(np.uint8(input_first_frame[0].cpu().permute(1, 2, 0)*255))
height, width = input_first_frame.shape[-2:]
input_drag_384_inmask = input_drag_384_inmask.permute(0, 1, 4, 2, 3) # [1, 13, 2, 384, 384]
mask_384_inmask = input_mask_384_inmask.unsqueeze(2).repeat(1, 1, 2, 1, 1) # [1, 13, 2, 384, 384]
input_drag_384_outmask = input_drag_384_outmask.permute(0, 1, 4, 2, 3) # [1, 13, 2, 384, 384]
mask_384_outmask = input_mask_384_outmask.unsqueeze(2).repeat(1, 1, 2, 1, 1) # [1, 13, 2, 384, 384]
print('start diffusion process...')
input_drag_384_inmask = input_drag_384_inmask.to(self.device, dtype=self.weight_dtype)
mask_384_inmask = mask_384_inmask.to(self.device, dtype=self.weight_dtype)
input_drag_384_outmask = input_drag_384_outmask.to(self.device, dtype=self.weight_dtype)
mask_384_outmask = mask_384_outmask.to(self.device, dtype=self.weight_dtype)
input_first_frame_384 = input_first_frame_384.to(self.device, dtype=self.weight_dtype)
if in_mask_flag:
flow_inmask = self.get_flow(
input_first_frame_384,
input_drag_384_inmask, mask_384_inmask, motion_brush_mask
)
else:
fb, fl = mask_384_inmask.shape[:2]
flow_inmask = torch.zeros(fb, fl, 2, self.height, self.width).to(self.device, dtype=self.weight_dtype)
if out_mask_flag:
flow_outmask = self.get_flow(
input_first_frame_384,
input_drag_384_outmask, mask_384_outmask
)
else:
fb, fl = mask_384_outmask.shape[:2]
flow_outmask = torch.zeros(fb, fl, 2, self.height, self.width).to(self.device, dtype=self.weight_dtype)
inmask_no_zero = (flow_inmask != 0).all(dim=2)
inmask_no_zero = inmask_no_zero.unsqueeze(2).expand_as(flow_inmask)
controlnet_flow = torch.where(inmask_no_zero, flow_inmask, flow_outmask)
val_output = self.pipeline(
input_first_frame_pil,
input_first_frame_pil,
controlnet_flow,
height=height,
width=width,
num_frames=num_frames,
decode_chunk_size=8,
motion_bucket_id=127,
fps=7,
noise_aug_strength=0.02,
controlnet_cond_scale=ctrl_scale,
)
video_frames, estimated_flow = val_output.frames[0], val_output.controlnet_flow
for i in range(num_frames):
img = video_frames[i]
video_frames[i] = np.array(img)
video_frames = torch.from_numpy(np.array(video_frames)).cuda().permute(0, 3, 1, 2).unsqueeze(0) / 255.
print(video_frames.shape)
viz_esti_flows = []
for i in range(estimated_flow.shape[1]):
temp_flow = estimated_flow[0][i].permute(1, 2, 0)
viz_esti_flows.append(flow_to_image(temp_flow))
viz_esti_flows = [np.uint8(np.ones_like(viz_esti_flows[-1]) * 255)] + viz_esti_flows
viz_esti_flows = np.stack(viz_esti_flows) # [t-1, h, w, c]
total_nps = viz_esti_flows
outputs['logits_imgs'] = video_frames
outputs['flows'] = torch.from_numpy(total_nps).cuda().permute(0, 3, 1, 2).unsqueeze(0) / 255.
return outputs
@torch.no_grad()
def get_cmp_flow_from_tracking_points(self, tracking_points, motion_brush_mask, first_frame_path):
original_width, original_height = self.width, self.height
input_all_points = tracking_points.constructor_args['value']
if len(input_all_points) == 0 or len(input_all_points[-1]) == 1:
return np.uint8(np.ones((original_width, original_height, 3))*255)
resized_all_points = [tuple([tuple([int(e1[0]*self.width/original_width), int(e1[1]*self.height/original_height)]) for e1 in e]) for e in input_all_points]
resized_all_points_384 = [tuple([tuple([int(e1[0]*384/original_width), int(e1[1]*384/original_height)]) for e1 in e]) for e in input_all_points]
new_resized_all_points = []
new_resized_all_points_384 = []
for tnum in range(len(resized_all_points)):
new_resized_all_points.append(interpolate_trajectory(input_all_points[tnum], self.model_length))
new_resized_all_points_384.append(interpolate_trajectory(resized_all_points_384[tnum], self.model_length))
resized_all_points = np.array(new_resized_all_points)
resized_all_points_384 = np.array(new_resized_all_points_384)
motion_brush_mask_384 = cv2.resize(motion_brush_mask, (384, 384), cv2.INTER_NEAREST)
resized_all_points_384_inmask, resized_all_points_384_outmask = \
divide_points_afterinterpolate(resized_all_points_384, motion_brush_mask_384)
in_mask_flag = False
out_mask_flag = False
if resized_all_points_384_inmask.shape[0] != 0:
in_mask_flag = True
input_drag_384_inmask, input_mask_384_inmask = \
get_sparseflow_and_mask_forward(
resized_all_points_384_inmask,
self.model_length - 1, 384, 384
)
else:
input_drag_384_inmask, input_mask_384_inmask = \
np.zeros((self.model_length - 1, 384, 384, 2)), \
np.zeros((self.model_length - 1, 384, 384))
if resized_all_points_384_outmask.shape[0] != 0:
out_mask_flag = True
input_drag_384_outmask, input_mask_384_outmask = \
get_sparseflow_and_mask_forward(
resized_all_points_384_outmask,
self.model_length - 1, 384, 384
)
else:
input_drag_384_outmask, input_mask_384_outmask = \
np.zeros((self.model_length - 1, 384, 384, 2)), \
np.zeros((self.model_length - 1, 384, 384))
input_drag_384_inmask = torch.from_numpy(input_drag_384_inmask).unsqueeze(0).to(self.device) # [1, 13, h, w, 2]
input_mask_384_inmask = torch.from_numpy(input_mask_384_inmask).unsqueeze(0).to(self.device) # [1, 13, h, w]
input_drag_384_outmask = torch.from_numpy(input_drag_384_outmask).unsqueeze(0).to(self.device) # [1, 13, h, w, 2]
input_mask_384_outmask = torch.from_numpy(input_mask_384_outmask).unsqueeze(0).to(self.device) # [1, 13, h, w]
first_frames_transform = transforms.Compose([
lambda x: Image.fromarray(x),
transforms.ToTensor(),
])
input_first_frame = image2arr(first_frame_path)
input_first_frame = repeat(first_frames_transform(input_first_frame), 'c h w -> b c h w', b=1).to(self.device)
seed = 42
num_frames = self.model_length
set_seed(seed)
input_first_frame_384 = F.interpolate(input_first_frame, (384, 384))
input_first_frame_384 = input_first_frame_384.repeat(num_frames - 1, 1, 1, 1).unsqueeze(0)
input_drag_384_inmask = input_drag_384_inmask.permute(0, 1, 4, 2, 3) # [1, 13, 2, 384, 384]
mask_384_inmask = input_mask_384_inmask.unsqueeze(2).repeat(1, 1, 2, 1, 1) # [1, 13, 2, 384, 384]
input_drag_384_outmask = input_drag_384_outmask.permute(0, 1, 4, 2, 3) # [1, 13, 2, 384, 384]
mask_384_outmask = input_mask_384_outmask.unsqueeze(2).repeat(1, 1, 2, 1, 1) # [1, 13, 2, 384, 384]
input_drag_384_inmask = input_drag_384_inmask.to(self.device, dtype=self.weight_dtype)
mask_384_inmask = mask_384_inmask.to(self.device, dtype=self.weight_dtype)
input_drag_384_outmask = input_drag_384_outmask.to(self.device, dtype=self.weight_dtype)
mask_384_outmask = mask_384_outmask.to(self.device, dtype=self.weight_dtype)
input_first_frame_384 = input_first_frame_384.to(self.device, dtype=self.weight_dtype)
if in_mask_flag:
flow_inmask = self.get_flow(
input_first_frame_384,
input_drag_384_inmask, mask_384_inmask, motion_brush_mask_384
)
else:
fb, fl = mask_384_inmask.shape[:2]
flow_inmask = torch.zeros(fb, fl, 2, self.height, self.width).to(self.device, dtype=self.weight_dtype)
if out_mask_flag:
flow_outmask = self.get_flow(
input_first_frame_384,
input_drag_384_outmask, mask_384_outmask
)
else:
fb, fl = mask_384_outmask.shape[:2]
flow_outmask = torch.zeros(fb, fl, 2, self.height, self.width).to(self.device, dtype=self.weight_dtype)
inmask_no_zero = (flow_inmask != 0).all(dim=2)
inmask_no_zero = inmask_no_zero.unsqueeze(2).expand_as(flow_inmask)
controlnet_flow = torch.where(inmask_no_zero, flow_inmask, flow_outmask)
controlnet_flow = controlnet_flow[0, -1].permute(1, 2, 0)
viz_esti_flows = flow_to_image(controlnet_flow) # [h, w, c]
return viz_esti_flows
def run(self, first_frame_path, tracking_points, inference_batch_size, motion_brush_mask, motion_brush_viz, ctrl_scale):
original_width, original_height = self.width, self.height
input_all_points = tracking_points.constructor_args['value']
resized_all_points = [tuple([tuple([int(e1[0]*self.width/original_width), int(e1[1]*self.height/original_height)]) for e1 in e]) for e in input_all_points]
resized_all_points_384 = [tuple([tuple([int(e1[0]*384/original_width), int(e1[1]*384/original_height)]) for e1 in e]) for e in input_all_points]
new_resized_all_points = []
new_resized_all_points_384 = []
for tnum in range(len(resized_all_points)):
new_resized_all_points.append(interpolate_trajectory(input_all_points[tnum], self.model_length))
new_resized_all_points_384.append(interpolate_trajectory(resized_all_points_384[tnum], self.model_length))
resized_all_points = np.array(new_resized_all_points)
resized_all_points_384 = np.array(new_resized_all_points_384)
motion_brush_mask_384 = cv2.resize(motion_brush_mask, (384, 384), cv2.INTER_NEAREST)
resized_all_points_384_inmask, resized_all_points_384_outmask = \
divide_points_afterinterpolate(resized_all_points_384, motion_brush_mask_384)
in_mask_flag = False
out_mask_flag = False
if resized_all_points_384_inmask.shape[0] != 0:
in_mask_flag = True
input_drag_384_inmask, input_mask_384_inmask = \
get_sparseflow_and_mask_forward(
resized_all_points_384_inmask,
self.model_length - 1, 384, 384
)
else:
input_drag_384_inmask, input_mask_384_inmask = \
np.zeros((self.model_length - 1, 384, 384, 2)), \
np.zeros((self.model_length - 1, 384, 384))
if resized_all_points_384_outmask.shape[0] != 0:
out_mask_flag = True
input_drag_384_outmask, input_mask_384_outmask = \
get_sparseflow_and_mask_forward(
resized_all_points_384_outmask,
self.model_length - 1, 384, 384
)
else:
input_drag_384_outmask, input_mask_384_outmask = \
np.zeros((self.model_length - 1, 384, 384, 2)), \
np.zeros((self.model_length - 1, 384, 384))
input_drag_384_inmask = torch.from_numpy(input_drag_384_inmask).unsqueeze(0) # [1, 13, h, w, 2]
input_mask_384_inmask = torch.from_numpy(input_mask_384_inmask).unsqueeze(0) # [1, 13, h, w]
input_drag_384_outmask = torch.from_numpy(input_drag_384_outmask).unsqueeze(0) # [1, 13, h, w, 2]
input_mask_384_outmask = torch.from_numpy(input_mask_384_outmask).unsqueeze(0) # [1, 13, h, w]
dir, base, ext = split_filename(first_frame_path)
id = base.split('_')[0]
image_pil = image2pil(first_frame_path)
image_pil = image_pil.resize((self.width, self.height), Image.BILINEAR).convert('RGB')
visualized_drag, _ = visualize_drag_v2(first_frame_path, resized_all_points, self.width, self.height)
motion_brush_viz_pil = Image.fromarray(motion_brush_viz.astype(np.uint8)).convert('RGBA')
visualized_drag = visualized_drag[0].convert('RGBA')
visualized_drag_brush = Image.alpha_composite(motion_brush_viz_pil, visualized_drag)
first_frames_transform = transforms.Compose([
lambda x: Image.fromarray(x),
transforms.ToTensor(),
])
outputs = None
ouput_video_list = []
ouput_flow_list = []
num_inference = 1
for i in tqdm(range(num_inference)):
if not outputs:
first_frames = image2arr(first_frame_path)
first_frames = repeat(first_frames_transform(first_frames), 'c h w -> b c h w', b=inference_batch_size).to(self.device)
else:
first_frames = outputs['logits_imgs'][:, -1]
outputs = self.forward_sample(
input_drag_384_inmask.to(self.device),
input_drag_384_outmask.to(self.device),
first_frames.to(self.device),
input_mask_384_inmask.to(self.device),
input_mask_384_outmask.to(self.device),
in_mask_flag,
out_mask_flag,
motion_brush_mask_384,
ctrl_scale)
ouput_video_list.append(outputs['logits_imgs'])
ouput_flow_list.append(outputs['flows'])
hint_path = os.path.join(output_dir_video, str(id), f'{id}_hint.png')
visualized_drag_brush.save(hint_path)
for i in range(inference_batch_size):
output_tensor = [ouput_video_list[0][i]]
flow_tensor = [ouput_flow_list[0][i]]
output_tensor = torch.cat(output_tensor, dim=0)
flow_tensor = torch.cat(flow_tensor, dim=0)
outputs_path = os.path.join(output_dir_video, str(id), f's{ctrl_scale}', f'{id}_output.gif')
flows_path = os.path.join(output_dir_video, str(id), f's{ctrl_scale}', f'{id}_flow.gif')
outputs_mp4_path = os.path.join(output_dir_video, str(id), f's{ctrl_scale}', f'{id}_output.mp4')
flows_mp4_path = os.path.join(output_dir_video, str(id), f's{ctrl_scale}', f'{id}_flow.mp4')
outputs_frames_path = os.path.join(output_dir_frame, str(id), f's{ctrl_scale}', f'{id}_output')
flows_frames_path = os.path.join(output_dir_frame, str(id), f's{ctrl_scale}', f'{id}_flow')
os.makedirs(os.path.join(output_dir_video, str(id), f's{ctrl_scale}'), exist_ok=True)
os.makedirs(os.path.join(outputs_frames_path), exist_ok=True)
os.makedirs(os.path.join(flows_frames_path), exist_ok=True)
print(output_tensor.shape)
output_RGB = output_tensor.permute(0, 2, 3, 1).mul(255).cpu().numpy()
flow_RGB = flow_tensor.permute(0, 2, 3, 1).mul(255).cpu().numpy()
torchvision.io.write_video(
outputs_mp4_path,
output_RGB,
fps=20, video_codec='h264', options={'crf': '10'}
)
torchvision.io.write_video(
flows_mp4_path,
flow_RGB,
fps=20, video_codec='h264', options={'crf': '10'}
)
imageio.mimsave(outputs_path, np.uint8(output_RGB), fps=20, loop=0)
imageio.mimsave(flows_path, np.uint8(flow_RGB), fps=20, loop=0)
for f in range(output_RGB.shape[0]):
Image.fromarray(np.uint8(output_RGB[f])).save(os.path.join(outputs_frames_path, f'{str(f).zfill(3)}.png'))
Image.fromarray(np.uint8(flow_RGB[f])).save(os.path.join(flows_frames_path, f'{str(f).zfill(3)}.png'))
return hint_path, outputs_path, flows_path, outputs_mp4_path, flows_mp4_path
with gr.Blocks() as demo:
gr.Markdown("""<h1 align="center">MOFA-Video</h1><br>""")
gr.Markdown("""Official Gradio Demo for <a href='https://myniuuu.github.io/MOFA_Video'><b>MOFA-Video: Controllable Image Animation via Generative Motion Field Adaptions in Frozen Image-to-Video Diffusion Model</b></a>.<br>""")
gr.Markdown(
"""
During the inference, kindly follow these instructions:
<br>
1. Use the "Upload Image" button to upload an image. Avoid dragging the image directly into the window. <br>
2. Proceed to draw trajectories: <br>
2.1. Click "Add Trajectory" first, then select points on the "Add Trajectory Here" image. The first click sets the starting point. Click multiple points to create a non-linear trajectory. To add a new trajectory, click "Add Trajectory" again and select points on the image. <br>
2.2. After adding each trajectory, an optical flow image will be displayed automatically. Use it as a reference to adjust the trajectory for desired effects (e.g., area, intensity). <br>
2.3. To delete the latest trajectory, click "Delete Last Trajectory." <br>
2.4. Choose the Control Scale in the bar. This determines the control intensity. Setting it to 0 means no control (pure generation result of SVD itself), while setting it to 1 results in the strongest control (which will not lead to good results in most cases because of twisting artifacts). A preset value of 0.6 is recommended for most cases. <br>
2.5. To use the motion brush for restraining the control area of the trajectory, click to add masks on the "Add Motion Brush Here" image. The motion brush restricts the optical flow area derived from the trajectory whose starting point is within the motion brush. The displayed optical flow image will change correspondingly. Adjust the motion brush radius using the "Motion Brush Radius" bar. <br>
3. Click the "Run" button to animate the image according to the path. <br>
"""
)
target_size = 512
DragNUWA_net = Drag("cuda:0", target_size, target_size, 25)
first_frame_path = gr.State()
tracking_points = gr.State([])
motion_brush_points = gr.State([])
motion_brush_mask = gr.State()
motion_brush_viz = gr.State()
inference_batch_size = gr.State(1)
def preprocess_image(image):
image_pil = image2pil(image.name)
raw_w, raw_h = image_pil.size
max_edge = min(raw_w, raw_h)
resize_ratio = target_size / max_edge
image_pil = image_pil.resize((round(raw_w * resize_ratio), round(raw_h * resize_ratio)), Image.BILINEAR)
new_w, new_h = image_pil.size
crop_w = new_w - (new_w % 64)
crop_h = new_h - (new_h % 64)
image_pil = transforms.CenterCrop((crop_h, crop_w))(image_pil.convert('RGB'))
DragNUWA_net.width = crop_w
DragNUWA_net.height = crop_h
id = str(time.time()).split('.')[0]
os.makedirs(os.path.join(output_dir_video, str(id)), exist_ok=True)
os.makedirs(os.path.join(output_dir_frame, str(id)), exist_ok=True)
first_frame_path = os.path.join(output_dir_video, str(id), f"{id}_input.png")
image_pil.save(first_frame_path)
return first_frame_path, first_frame_path, first_frame_path, gr.State([]), gr.State([]), np.zeros((crop_h, crop_w)), np.zeros((crop_h, crop_w, 4))
def add_drag(tracking_points):
tracking_points.constructor_args['value'].append([])
return tracking_points
def add_mask(motion_brush_points):
motion_brush_points.constructor_args['value'].append([])
return motion_brush_points
def delete_last_drag(tracking_points, first_frame_path, motion_brush_mask):
tracking_points.constructor_args['value'].pop()
transparent_background = Image.open(first_frame_path).convert('RGBA')
w, h = transparent_background.size
transparent_layer = np.zeros((h, w, 4))
for track in tracking_points.constructor_args['value']:
if len(track) > 1:
for i in range(len(track)-1):
start_point = track[i]
end_point = track[i+1]
vx = end_point[0] - start_point[0]
vy = end_point[1] - start_point[1]
arrow_length = np.sqrt(vx**2 + vy**2)
if i == len(track)-2:
cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
else:
cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
else:
cv2.circle(transparent_layer, tuple(track[0]), 5, (255, 0, 0, 255), -1)
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
viz_flow = DragNUWA_net.get_cmp_flow_from_tracking_points(tracking_points, motion_brush_mask, first_frame_path)
return tracking_points, trajectory_map, viz_flow
def add_motion_brushes(motion_brush_points, motion_brush_mask, transparent_layer, first_frame_path, radius, tracking_points, evt: gr.SelectData):
transparent_background = Image.open(first_frame_path).convert('RGBA')
w, h = transparent_background.size
motion_points = motion_brush_points.constructor_args['value']
motion_points.append(evt.index)
x, y = evt.index
cv2.circle(motion_brush_mask, (x, y), radius, 255, -1)
cv2.circle(transparent_layer, (x, y), radius, (0, 0, 255, 255), -1)
transparent_layer_pil = Image.fromarray(transparent_layer.astype(np.uint8))
motion_map = Image.alpha_composite(transparent_background, transparent_layer_pil)
viz_flow = DragNUWA_net.get_cmp_flow_from_tracking_points(tracking_points, motion_brush_mask, first_frame_path)
return motion_brush_mask, transparent_layer, motion_map, viz_flow
def add_tracking_points(tracking_points, first_frame_path, motion_brush_mask, evt: gr.SelectData):
print(f"You selected {evt.value} at {evt.index} from {evt.target}")
tracking_points.constructor_args['value'][-1].append(evt.index)
# print(tracking_points.constructor_args['value'])
transparent_background = Image.open(first_frame_path).convert('RGBA')
w, h = transparent_background.size
transparent_layer = np.zeros((h, w, 4))
for track in tracking_points.constructor_args['value']:
if len(track) > 1:
for i in range(len(track)-1):
start_point = track[i]
end_point = track[i+1]
vx = end_point[0] - start_point[0]
vy = end_point[1] - start_point[1]
arrow_length = np.sqrt(vx**2 + vy**2)
if i == len(track)-2:
cv2.arrowedLine(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2, tipLength=8 / arrow_length)
else:
cv2.line(transparent_layer, tuple(start_point), tuple(end_point), (255, 0, 0, 255), 2,)
else:
cv2.circle(transparent_layer, tuple(track[0]), 3, (255, 0, 0, 255), -1)
transparent_layer = Image.fromarray(transparent_layer.astype(np.uint8))
trajectory_map = Image.alpha_composite(transparent_background, transparent_layer)
viz_flow = DragNUWA_net.get_cmp_flow_from_tracking_points(tracking_points, motion_brush_mask, first_frame_path)
return tracking_points, trajectory_map, viz_flow
with gr.Row():
with gr.Column(scale=2):
image_upload_button = gr.UploadButton(label="Upload Image",file_types=["image"])
add_drag_button = gr.Button(value="Add Trajectory")
run_button = gr.Button(value="Run")
delete_last_drag_button = gr.Button(value="Delete Last Trajectory")
brush_radius = gr.Slider(label='Motion Brush Radius',
minimum=1,
maximum=100,
step=1,
value=10)
ctrl_scale = gr.Slider(label='Control Scale',
minimum=0,
maximum=1.,
step=0.01,
value=0.6)
with gr.Column(scale=5):
input_image = gr.Image(label="Add Trajectory Here",
interactive=True)
with gr.Column(scale=5):
input_image_mask = gr.Image(label="Add Motion Brush Here",
interactive=True)
with gr.Row():
with gr.Column(scale=6):
viz_flow = gr.Image(label="Visualized Flow")
with gr.Column(scale=6):
hint_image = gr.Image(label="Visualized Hint Image")
with gr.Row():
with gr.Column(scale=6):
output_video = gr.Image(label="Output Video")
with gr.Column(scale=6):
output_flow = gr.Image(label="Output Flow")
with gr.Row():
with gr.Column(scale=6):
output_video_mp4 = gr.Video(label="Output Video mp4")
with gr.Column(scale=6):
output_flow_mp4 = gr.Video(label="Output Flow mp4")
image_upload_button.upload(preprocess_image, image_upload_button, [input_image, input_image_mask, first_frame_path, tracking_points, motion_brush_points, motion_brush_mask, motion_brush_viz])
add_drag_button.click(add_drag, tracking_points, tracking_points)
delete_last_drag_button.click(delete_last_drag, [tracking_points, first_frame_path, motion_brush_mask], [tracking_points, input_image, viz_flow])
input_image.select(add_tracking_points, [tracking_points, first_frame_path, motion_brush_mask], [tracking_points, input_image, viz_flow])
input_image_mask.select(add_motion_brushes, [motion_brush_points, motion_brush_mask, motion_brush_viz, first_frame_path, brush_radius, tracking_points], [motion_brush_mask, motion_brush_viz, input_image_mask, viz_flow])
run_button.click(DragNUWA_net.run, [first_frame_path, tracking_points, inference_batch_size, motion_brush_mask, motion_brush_viz, ctrl_scale], [hint_image, output_video, output_flow, output_video_mp4, output_flow_mp4])
demo.launch(server_name="0.0.0.0", debug=True, server_port=80)
|