myniu
init
12f772a
import torch
from bisect import bisect_right
class _LRScheduler(object):
def __init__(self, optimizer, last_iter=-1):
if not isinstance(optimizer, torch.optim.Optimizer):
raise TypeError('{} is not an Optimizer'.format(
type(optimizer).__name__))
self.optimizer = optimizer
if last_iter == -1:
for group in optimizer.param_groups:
group.setdefault('initial_lr', group['lr'])
else:
for i, group in enumerate(optimizer.param_groups):
if 'initial_lr' not in group:
raise KeyError("param 'initial_lr' is not specified "
"in param_groups[{}] when resuming an optimizer".format(i))
self.base_lrs = list(map(lambda group: group['initial_lr'], optimizer.param_groups))
self.last_iter = last_iter
def _get_new_lr(self):
raise NotImplementedError
def get_lr(self):
return list(map(lambda group: group['lr'], self.optimizer.param_groups))
def step(self, this_iter=None):
if this_iter is None:
this_iter = self.last_iter + 1
self.last_iter = this_iter
for param_group, lr in zip(self.optimizer.param_groups, self._get_new_lr()):
param_group['lr'] = lr
class _WarmUpLRSchedulerOld(_LRScheduler):
def __init__(self, optimizer, base_lr, warmup_lr, warmup_steps, last_iter=-1):
self.base_lr = base_lr
self.warmup_steps = warmup_steps
if warmup_steps == 0:
self.warmup_lr = base_lr
else:
self.warmup_lr = warmup_lr
super(_WarmUpLRSchedulerOld, self).__init__(optimizer, last_iter)
def _get_warmup_lr(self):
if self.warmup_steps > 0 and self.last_iter < self.warmup_steps:
# first compute relative scale for self.base_lr, then multiply to base_lr
scale = ((self.last_iter/self.warmup_steps)*(self.warmup_lr - self.base_lr) + self.base_lr)/self.base_lr
#print('last_iter: {}, warmup_lr: {}, base_lr: {}, scale: {}'.format(self.last_iter, self.warmup_lr, self.base_lr, scale))
return [scale * base_lr for base_lr in self.base_lrs]
else:
return None
class _WarmUpLRScheduler(_LRScheduler):
def __init__(self, optimizer, base_lr, warmup_lr, warmup_steps, last_iter=-1):
self.base_lr = base_lr
self.warmup_lr = warmup_lr
self.warmup_steps = warmup_steps
assert isinstance(warmup_lr, list)
assert isinstance(warmup_steps, list)
assert len(warmup_lr) == len(warmup_steps)
super(_WarmUpLRScheduler, self).__init__(optimizer, last_iter)
def _get_warmup_lr(self):
pos = bisect_right(self.warmup_steps, self.last_iter)
if pos >= len(self.warmup_steps):
return None
else:
if pos == 0:
curr_lr = self.base_lr + self.last_iter * (self.warmup_lr[pos] - self.base_lr) / self.warmup_steps[pos]
else:
curr_lr = self.warmup_lr[pos - 1] + (self.last_iter - self.warmup_steps[pos - 1]) * (self.warmup_lr[pos] - self.warmup_lr[pos - 1]) / (self.warmup_steps[pos] - self.warmup_steps[pos - 1])
scale = curr_lr / self.base_lr
return [scale * base_lr for base_lr in self.base_lrs]
class StepLRScheduler(_WarmUpLRScheduler):
def __init__(self, optimizer, milestones, lr_mults, base_lr, warmup_lr, warmup_steps, last_iter=-1):
super(StepLRScheduler, self).__init__(optimizer, base_lr, warmup_lr, warmup_steps, last_iter)
assert len(milestones) == len(lr_mults), "{} vs {}".format(milestones, lr_mults)
for x in milestones:
assert isinstance(x, int)
if not list(milestones) == sorted(milestones):
raise ValueError('Milestones should be a list of'
' increasing integers. Got {}', milestones)
self.milestones = milestones
self.lr_mults = [1.0]
for x in lr_mults:
self.lr_mults.append(self.lr_mults[-1]*x)
def _get_new_lr(self):
warmup_lrs = self._get_warmup_lr()
if warmup_lrs is not None:
return warmup_lrs
pos = bisect_right(self.milestones, self.last_iter)
if len(self.warmup_lr) == 0:
scale = self.lr_mults[pos]
else:
scale = self.warmup_lr[-1] * self.lr_mults[pos] / self.base_lr
return [base_lr * scale for base_lr in self.base_lrs]