|
import numpy as np |
|
|
|
import torch |
|
from . import flowlib |
|
|
|
class Fuser(object): |
|
def __init__(self, nbins, fmax): |
|
self.nbins = nbins |
|
self.fmax = fmax |
|
self.step = 2 * fmax / float(nbins) |
|
self.mesh = torch.arange(nbins).view(1,-1,1,1).float().cuda() * self.step - fmax + self.step / 2 |
|
|
|
def convert_flow(self, flow_prob): |
|
flow_probx = torch.nn.functional.softmax(flow_prob[:, :self.nbins, :, :], dim=1) |
|
flow_proby = torch.nn.functional.softmax(flow_prob[:, self.nbins:, :, :], dim=1) |
|
flow_probx = flow_probx * self.mesh |
|
flow_proby = flow_proby * self.mesh |
|
flow = torch.cat([flow_probx.sum(dim=1, keepdim=True), flow_proby.sum(dim=1, keepdim=True)], dim=1) |
|
return flow |
|
|
|
def visualize_tensor_old(image, mask, flow_pred, flow_target, warped, rgb_gen, image_target, image_mean, image_div): |
|
together = [ |
|
draw_cross(unormalize(image.cpu(), mean=image_mean, div=image_div), mask.cpu(), radius=int(image.size(3) / 50.)), |
|
flow_to_image(flow_pred.detach().cpu()), |
|
flow_to_image(flow_target.detach().cpu())] |
|
if warped is not None: |
|
together.append(torch.clamp(unormalize(warped.detach().cpu(), mean=image_mean, div=image_div), 0, 255)) |
|
if rgb_gen is not None: |
|
together.append(torch.clamp(unormalize(rgb_gen.detach().cpu(), mean=image_mean, div=image_div), 0, 255)) |
|
if image_target is not None: |
|
together.append(torch.clamp(unormalize(image_target.cpu(), mean=image_mean, div=image_div), 0, 255)) |
|
together = torch.cat(together, dim=3) |
|
return together |
|
|
|
def visualize_tensor(image, mask, flow_tensors, common_tensors, rgb_tensors, image_mean, image_div): |
|
together = [ |
|
draw_cross(unormalize(image.cpu(), mean=image_mean, div=image_div), mask.cpu(), radius=int(image.size(3) / 50.))] |
|
for ft in flow_tensors: |
|
together.append(flow_to_image(ft.cpu())) |
|
for ct in common_tensors: |
|
together.append(torch.clamp(ct.cpu(), 0, 255)) |
|
for rt in rgb_tensors: |
|
together.append(torch.clamp(unormalize(rt.cpu(), mean=image_mean, div=image_div), 0, 255)) |
|
together = torch.cat(together, dim=3) |
|
return together |
|
|
|
|
|
def unormalize(tensor, mean, div): |
|
for c, (m, d) in enumerate(zip(mean, div)): |
|
tensor[:,c,:,:].mul_(d).add_(m) |
|
return tensor |
|
|
|
|
|
def flow_to_image(flow): |
|
flow = flow.numpy() |
|
flow_img = np.array([flowlib.flow_to_image(fl.transpose((1,2,0))).transpose((2,0,1)) for fl in flow]).astype(np.float32) |
|
return torch.from_numpy(flow_img) |
|
|
|
def shift_tensor(input, offh, offw): |
|
new = torch.zeros(input.size()) |
|
h = input.size(2) |
|
w = input.size(3) |
|
new[:,:,max(0,offh):min(h,h+offh),max(0,offw):min(w,w+offw)] = input[:,:,max(0,-offh):min(h,h-offh),max(0,-offw):min(w,w-offw)] |
|
return new |
|
|
|
def draw_block(mask, radius=5): |
|
''' |
|
input: tensor (NxCxHxW) |
|
output: block_mask (Nx1xHxW) |
|
''' |
|
all_mask = [] |
|
mask = mask[:,0:1,:,:] |
|
for offh in range(-radius, radius+1): |
|
for offw in range(-radius, radius+1): |
|
all_mask.append(shift_tensor(mask, offh, offw)) |
|
block_mask = sum(all_mask) |
|
block_mask[block_mask > 0] = 1 |
|
return block_mask |
|
|
|
def expand_block(sparse, radius=5): |
|
''' |
|
input: sparse (NxCxHxW) |
|
output: block_sparse (NxCxHxW) |
|
''' |
|
all_sparse = [] |
|
for offh in range(-radius, radius+1): |
|
for offw in range(-radius, radius+1): |
|
all_sparse.append(shift_tensor(sparse, offh, offw)) |
|
block_sparse = sum(all_sparse) |
|
return block_sparse |
|
|
|
def draw_cross(tensor, mask, radius=5, thickness=2): |
|
''' |
|
input: tensor (NxCxHxW) |
|
mask (NxXxHxW) |
|
output: new_tensor (NxCxHxW) |
|
''' |
|
all_mask = [] |
|
mask = mask[:,0:1,:,:] |
|
for off in range(-radius, radius+1): |
|
for t in range(-thickness, thickness+1): |
|
all_mask.append(shift_tensor(mask, off, t)) |
|
all_mask.append(shift_tensor(mask, t, off)) |
|
cross_mask = sum(all_mask) |
|
new_tensor = tensor.clone() |
|
new_tensor[:,0:1,:,:][cross_mask > 0] = 255.0 |
|
new_tensor[:,1:2,:,:][cross_mask > 0] = 0.0 |
|
new_tensor[:,2:3,:,:][cross_mask > 0] = 0.0 |
|
return new_tensor |
|
|