N0de commited on
Commit
9414124
·
verified ·
1 Parent(s): 4114f8c

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -1,11 +1,10 @@
1
  ---
 
2
  tags:
3
  - LunarLander-v2
4
- - ppo
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
- - custom-implementation
8
- - deep-rl-course
9
  model-index:
10
  - name: PPO
11
  results:
@@ -17,45 +16,22 @@ model-index:
17
  type: LunarLander-v2
18
  metrics:
19
  - type: mean_reward
20
- value: -178.90 +/- 91.64
21
  name: mean_reward
22
  verified: false
23
  ---
24
 
25
- # PPO Agent Playing LunarLander-v2
 
 
26
 
27
- This is a trained model of a PPO agent playing LunarLander-v2.
 
28
 
29
- # Hyperparameters
30
- ```python
31
- {'exp_name': 'ppo'
32
- 'seed': 1
33
- 'torch_deterministic': True
34
- 'cuda': True
35
- 'track': False
36
- 'wandb_project_name': 'cleanRL'
37
- 'wandb_entity': None
38
- 'capture_video': False
39
- 'env_id': 'LunarLander-v2'
40
- 'total_timesteps': 50000
41
- 'learning_rate': 0.00025
42
- 'num_envs': 4
43
- 'num_steps': 128
44
- 'anneal_lr': True
45
- 'gae': True
46
- 'gamma': 0.99
47
- 'gae_lambda': 0.95
48
- 'num_minibatches': 4
49
- 'update_epochs': 4
50
- 'norm_adv': True
51
- 'clip_coef': 0.2
52
- 'clip_vloss': True
53
- 'ent_coef': 0.01
54
- 'vf_coef': 0.5
55
- 'max_grad_norm': 0.5
56
- 'target_kl': None
57
- 'repo_id': 'N0de/ppo-LunarLander-v2'
58
- 'batch_size': 512
59
- 'minibatch_size': 128}
60
- ```
61
-
 
1
  ---
2
+ library_name: stable-baselines3
3
  tags:
4
  - LunarLander-v2
 
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
+ - stable-baselines3
 
8
  model-index:
9
  - name: PPO
10
  results:
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 262.05 +/- 13.72
20
  name: mean_reward
21
  verified: false
22
  ---
23
 
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
 
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
 
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff9429bf010>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff9429bf0a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff9429bf130>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff9429bf1c0>", "_build": "<function ActorCriticPolicy._build at 0x7ff9429bf250>", "forward": "<function ActorCriticPolicy.forward at 0x7ff9429bf2e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff9429bf370>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff9429bf400>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff9429bf490>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff9429bf520>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff9429bf5b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff9429bf640>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff9432ce580>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1711101580690412299, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKZ4oz0DiXK8OGRhvleSMr7QURY9koL6PgAAgD8AAIA/WiYuvloP4j5a7dc8BFFgvtVaJ72d6oa9AAAAAAAAAABt9wo+9vAtulSMSL4XVIS+jgGivNYJ77wAAAAAAAAAAM2kxjvh8/Q9a9ncPGlQhL6daX08Yvc2uwAAAAAAAAAAjdDJPcPZQ7ru9RG8Z1UettuynzpEYI01AAAAAAAAgD+AdCc9hXbau5/ZKTw1DYg8+FQ1PUbpZb0AAIA/AACAP2Ydm7yuXbC6iOJmNaDNNzCdMMg5wvigtAAAgD8AAIA/w4aCvscEHj9RRYg98Y+LvnhysL3mmc+8AAAAAAAAAADmn929y/rOPQm9Hj4kHXu+3gR1PEbCSL0AAAAAAAAAAKY91r3DBTa65j+CuiPWzrU7daQ7yRiYOQAAgD8AAAAAGqtCva6RkbpyS9S2oo2+sQAcLLj2T/k1AACAPwAAgD8oE4K++PKgP8jm3L6J7LW+jG56vnpvoL0AAAAAAAAAAI5SkL4V61Y/5JuxPT+Cj75+ULW9mt2VPQAAAAAAAAAAAIuzvHeJuD9ubrm+ll4lPkvOrDzg2TA9AAAAAAAAAADNTlO9SAmKuo2kjDQc9uCvrEgoOwJ3grMAAIA/AACAP1OtST5RrOc9vdudvrEnlr72yjK91RumPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCrHp2U0Nz+MAWyUS9yMAXSUR0CR+8jHn2ZidX2UKGgGR0BtyDwSamXPaAdNaQFoCEdAkfwoaYNRWXV9lChoBkdAcaSfJV81GmgHTRYBaAhHQJH9f6SDAah1fZQoaAZHQHJjM6mwaBJoB01PAWgIR0CR/6l7+kxidX2UKGgGR7//1J6IFeOXaAdNCgFoCEdAkf/dPxhDxHV9lChoBkdAcDm7Gecx02gHTXsBaAhHQJIAV7hNucd1fZQoaAZHQHGJF1bJOnFoB000AWgIR0CSAWw+MZP3dX2UKGgGR0BwRKj7ALy+aAdNUQFoCEdAkhXk2LpA2XV9lChoBkdAb87Qm/nGKmgHTUYBaAhHQJIWf1VYISl1fZQoaAZHQG9ViN0eU6hoB002AWgIR0CSGGymygPFdX2UKGgGR0ByC1I8QqZuaAdNRAFoCEdAkhiH9zfaYnV9lChoBkdAbcBq8DjioGgHTUwBaAhHQJIasqWkadd1fZQoaAZHQHFM6d6LOzJoB01TAWgIR0CSG5BhQWN4dX2UKGgGR0Bwh67iADq4aAdNQgFoCEdAkhwQYpDu0HV9lChoBkdAcEsXxOLzgGgHTT0BaAhHQJIcNweeWfN1fZQoaAZHQHC2ezposZpoB00HAWgIR0CSHk1TisGQdX2UKGgGR0BwmE7T2FnJaAdNWAFoCEdAkh5XDziCKHV9lChoBkdAb+bFy7wrlWgHTTcBaAhHQJIfPN+so2J1fZQoaAZHQG+R5J9RaX9oB01CAWgIR0CSH0XLvCuVdX2UKGgGR0BuOnQjUutfaAdNgwFoCEdAkiGHT7VJ+XV9lChoBkdAcBGqHXVbzWgHTUEBaAhHQJIij8iwB5p1fZQoaAZHQHAWFJ6IFeRoB00/AWgIR0CSIxndO6/ZdX2UKGgGR0BuasEcKgIyaAdN7AJoCEdAkiMlc2R7q3V9lChoBkdAZborZrYXf2gHTegDaAhHQJIjuj1wo9d1fZQoaAZHQGXWeglF+d9oB03oA2gIR0CSI9cwQDmsdX2UKGgGR0BvMHxYq5LAaAdNUgFoCEdAkiVY5ggHNXV9lChoBkdAbqOAksz2vmgHTWoBaAhHQJImRYPoV211fZQoaAZHQG5j4bsF+uxoB01HAWgIR0CSJt+fAbhndX2UKGgGR0BxJWzLOiWWaAdNPQFoCEdAkicyNfgJkXV9lChoBkdAcqZ9Jz1bq2gHTUwBaAhHQJIoDjvNNah1fZQoaAZHQB/IUahpQDVoB00VAWgIR0CSKBuNgjQidX2UKGgGR0BvgKqhlDneaAdNMAFoCEdAkijpiAlOXXV9lChoBkdAckp9LHuJDWgHTW8BaAhHQJIpLyI55qx1fZQoaAZHQG9QOHWSU1RoB00tAWgIR0CSKYWKdhAodX2UKGgGR0Bx89Kg7HQyaAdNVQFoCEdAkiq3hCMP0HV9lChoBkdAb26TNdJJ5GgHTUkBaAhHQJIu3HsC1Z11fZQoaAZHQHJMiKrJbMZoB01QAWgIR0CSMFgLZzxPdX2UKGgGR0Bwv4tWdVebaAdNaAFoCEdAkjILIDHOr3V9lChoBkdAcDH7fYSQHWgHTaoBaAhHQJIyPQSi/PB1fZQoaAZHQHGTPustCiRoB01MAWgIR0CSMxE2Hck/dX2UKGgGR0A6IZ4Oc2BKaAdNFQFoCEdAkjSgB1cMVnV9lChoBkdAbOehRqGlAWgHTa4BaAhHQJI07Dk2gnN1fZQoaAZHQHFW+HJtBOZoB01YAWgIR0CSNU6aLGaQdX2UKGgGR0BrgWdRR/EwaAdNWgFoCEdAkjYS2x6fJ3V9lChoBkdAcQ+RmK64D2gHTW0BaAhHQJI3LPZ7HAB1fZQoaAZHQHAYN9ph4MZoB01SAWgIR0CSNzezD4xldX2UKGgGR0BykLpdKNADaAdNWwFoCEdAkjlPlyR0VHV9lChoBkdAcJRNWU8mr2gHTUgBaAhHQJI6DqdH2AZ1fZQoaAZHQHHZgCwKSgZoB02AAWgIR0CSOjp0wJw9dX2UKGgGR0BuBpqbjLjhaAdNvwFoCEdAkjxAOz6acHV9lChoBkdActgeHi3ocWgHTUIBaAhHQJI9VzltCRh1fZQoaAZHQHMBki6g/TtoB007AWgIR0CST5I3zcyndX2UKGgGR0BuaafOD8LsaAdNOgFoCEdAklCkl/pdKXV9lChoBkdAb+eqfe1rqWgHTT4BaAhHQJJRjNC7btZ1fZQoaAZHQG7P9eQdS2poB00sAWgIR0CSUzhXr+o+dX2UKGgGR0ByGeNFSbYsaAdNUwFoCEdAklN57XxvvXV9lChoBkdAcGasYl6Z6WgHTYABaAhHQJJTp4FA3UB1fZQoaAZHQHGiViSaEzxoB01jAWgIR0CSVI7ALy+YdX2UKGgGR0BwvC+De0ojaAdNQQFoCEdAklU6Xa8HwHV9lChoBkdAb+LB9kSVW2gHTYQBaAhHQJJVljwx33Z1fZQoaAZHQHFfKVlf7aZoB01TAWgIR0CSVd2fTTfBdX2UKGgGR0BwmgHdGiHqaAdNEgFoCEdAklZa4H5aeXV9lChoBkdAa8a1Cw8nu2gHTUIBaAhHQJJXWMvRJEp1fZQoaAZHQHDH3DNyHVRoB01EAWgIR0CSWE1Q66redX2UKGgGR0BwCtZEDyOJaAdNQQFoCEdAkls94/u9e3V9lChoBkdAYfhu+AVfu2gHTegDaAhHQJJbxv73wkR1fZQoaAZHQHIRY/u9eyBoB01NAWgIR0CSXGsO5J9RdX2UKGgGR0Bv/j7sOXmeaAdNSQFoCEdAkl1I7/4qPXV9lChoBkdAbAi/ATIvJ2gHTZsBaAhHQJJd8mNR3vB1fZQoaAZHQG9aGEf1YhdoB00lAWgIR0CSXqtAcDKYdX2UKGgGR0Bwp3GACnxbaAdNTwFoCEdAkl64WHk92XV9lChoBkdAcectHQQcxWgHTSMBaAhHQJJe3K9wm3R1fZQoaAZHQHDi/boKUmloB007AWgIR0CSYBMkhRqHdX2UKGgGR0BtE9u5z5oHaAdNGQFoCEdAkmEcSwnpjnV9lChoBkdAcLwfiPyTZGgHTTYBaAhHQJJiBggHNX51fZQoaAZHQHC2xj4HooxoB01JAWgIR0CSYm9kjHGTdX2UKGgGR0By6j7oB7u2aAdNaQFoCEdAkmMdUXHim3V9lChoBkdAcelL8rI5pGgHTUcBaAhHQJJjr5Ec81Z1fZQoaAZHQHFFQ4S6DoRoB00uAWgIR0CSZPrRSgoPdX2UKGgGR0Bwp3ZIxxkvaAdNWQFoCEdAkmW9AX2ugnV9lChoBkdATMoN7SiM52gHS+doCEdAkmgX6InBtXV9lChoBkdAcmZG1x82JmgHTUEBaAhHQJJokUQCjlB1fZQoaAZHQHFXwn6VMVVoB00qAWgIR0CSaacLSeAedX2UKGgGR0BuI5kNFz+4aAdNMQFoCEdAkmpvlp48l3V9lChoBkdAcHYEKVpsXWgHTVYBaAhHQJJqmqlxffJ1fZQoaAZHQHKglEuxrzpoB01uAWgIR0CSat4Uvf0mdX2UKGgGR0BxI7q4YrJ9aAdNFAFoCEdAkmsmKyfL93V9lChoBkdAU19ZHNHH3mgHS/doCEdAkmv8XenAI3V9lChoBkdAcBLKTjebeGgHTRsBaAhHQJJsKQMhHLB1fZQoaAZHQHEoYZAIIGBoB01wAWgIR0CSbTVARkEtdX2UKGgGR0BxrrK5kK/maAdNJwFoCEdAkm6zuF6Av3V9lChoBkdAbGAf9P1tf2gHTUIBaAhHQJJvM5q/M4d1fZQoaAZHQG+qf7JnxrloB01kAWgIR0CSb3yAQQMAdX2UKGgGR0BrWATGo73gaAdNwwFoCEdAknAv779AHHV9lChoBkdAMFJdv863iWgHS95oCEdAknCA1WKdhHV9lChoBkdAa5S+B6KLsWgHTTUBaAhHQJJwrHCGetl1fZQoaAZHQHHrMm4RVZNoB001AWgIR0CScydwvQF+dX2UKGgGR0ByTNkYoAn2aAdNDwFoCEdAknNFKbrkbXV9lChoBkdAcQCD/EOy3WgHTSQBaAhHQJJ1Jj8UEgZ1fZQoaAZHQHGP0mdAgPpoB01GAWgIR0CSduQcPvrodWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6b3c44d240>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6b3c44d2d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6b3c44d360>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6b3c44d3f0>", "_build": "<function ActorCriticPolicy._build at 0x7f6b3c44d480>", "forward": "<function ActorCriticPolicy.forward at 0x7f6b3c44d510>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6b3c44d5a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6b3c44d630>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6b3c44d6c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6b3c44d750>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6b3c44d7e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6b3c44d870>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6b3c3eb1c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1711613285430125063, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0sO7v2THG6dftQvc9RBTPdHjc63PUgsgAAgD8AAIA/mgtTPBREhLqWUcOydENcsJQ9ILh7cKYzAACAPwAAgD/N8ns9iMKyPUsmXb5ekkm+cgRzu7ICRb0AAAAAAAAAAABlyrw4BKw/GWpDvg5Tv76jFG69VlNuvgAAAAAAAAAAALCeOrykNj3IBN+9DyA1vqPKgD1itY+8AAAAAAAAAADmqjA9K1UHP4JB8LwvWdm+U8FFPfDTlrsAAAAAAAAAAJrJuTspgGy61wiMOTduIDX0cI07D1OguAAAgD8AAIA/mi0VPaQAQblqIPa8+aOEsBYEOzlF4lkzAACAPwAAgD/ajfc9zxF6Psmjg74yGVm+q/fHPB/By70AAAAAAAAAAForzz2Awxg/ZSQkvl3Swb5OeNA9hrgQvgAAAAAAAAAATdmgPXGNebn+Zpa2ZtHOMPHsATqg2Lg1AACAPwAAAACgLB0+uyuSP903iD57sg2/pxs0PkSgqD0AAAAAAAAAAM0UxTvYhzc/KnoyPvfgBb8k+zu9XrJ2PQAAAAAAAAAA8/eBvkxFBD+KSSU+0Mu2vknA+L3fahU+AAAAAAAAAAAt8U8+kXt6Pyg1zT6Tmgu/yEB+Pqh41boAAAAAAAAAABoMvD21Xzk/rWCZPQrbwL60SOk9RaPSPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVEwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGxmExh2GIuMAWyUTSgBjAF0lEdAk4SGFi8WbnV9lChoBkdAcTgwQDmr82gHS+ZoCEdAk4WFYEGJN3V9lChoBkdAcwsK508vEmgHS9xoCEdAk4Zucx0uDnV9lChoBkdAcv+LGJememgHTRsBaAhHQJOG2P2f0291fZQoaAZHQG/E8LKFIupoB0vuaAhHQJOH6ymhufp1fZQoaAZHQHKKL52yLQ5oB00DAWgIR0CTiK1/Ue+3dX2UKGgGR0BxprpJPIn0aAdL7mgIR0CTilqN6w+udX2UKGgGR0By4bIjnmq6aAdNOAFoCEdAk4p68L8aXXV9lChoBkdAbdunF5v9+GgHTWoBaAhHQJOLLb349HN1fZQoaAZHQHInSLQ5WBBoB00KAWgIR0CTi8MC9ytFdX2UKGgGR0BwxmvPkaMraAdNFgFoCEdAk4x76k6903V9lChoBkdAb/Knpjc2zmgHS+BoCEdAk4yvVZs9CHV9lChoBkdAcHnVJcxCY2gHTQMBaAhHQJON2MNtqHp1fZQoaAZHQHAA7lmvnr9oB0vgaAhHQJOO73PAwf11fZQoaAZHQHFL5rLyMDRoB0vraAhHQJOPDQID5j91fZQoaAZHQHD+WVeKKpFoB00oAWgIR0CTjyWHUMG5dX2UKGgGR0BzvWjBVMmGaAdL9GgIR0CTkOkUbkwOdX2UKGgGR0BwPckTpPhyaAdNFwFoCEdAk5GaFRHf/HV9lChoBkdAcq5ePJaJRGgHS/RoCEdAk5IHenAIp3V9lChoBkdAcrvZYxL0z2gHTRQBaAhHQJOSdcxCY1J1fZQoaAZHQHHMAbyYoiNoB0vyaAhHQJOShaOgg5l1fZQoaAZHQHHmSDEm6XloB00BAWgIR0CTlDtsenyedX2UKGgGR0ByJ8YbbUPQaAdL32gIR0CTlJgg5imVdX2UKGgGR0ByGoCcPOIJaAdL8GgIR0CTlLZK3/gjdX2UKGgGR0By6pFnZkCnaAdL4GgIR0CTlktRNyo5dX2UKGgGR0BxFsmUnogWaAdNKQFoCEdAk5Z8sUZeiXV9lChoBkdAcSYfTkQwsWgHTTABaAhHQJOX/9zfaYh1fZQoaAZHQHAe53C9AX5oB0vzaAhHQJOYiiM5wOx1fZQoaAZHQHCYe1fE4vNoB00IAWgIR0CTmU1yeZogdX2UKGgGR0Bv+xwCKaXsaAdNGAFoCEdAk5nTWK/EfnV9lChoBkdAcPVZzPrv9mgHS+FoCEdAk5qHTmW+oXV9lChoBkdAclJVRk3CK2gHS/toCEdAk5rZzDGcWnV9lChoBkdAb8bn5i3G42gHS+VoCEdAk5uFa4c3l3V9lChoBkdAb1TlNDc/MWgHTQQBaAhHQJOc0RZlnRN1fZQoaAZHQHE8uiN83MpoB0vjaAhHQJOdqoDPnjh1fZQoaAZHQG6sVDa4+bFoB0vzaAhHQJOeNLoOhCd1fZQoaAZHQHKz0nkT6BRoB00GAWgIR0CTnqx95QgtdX2UKGgGR0BxClM/QjUvaAdNAgFoCEdAk6DSWAwwkHV9lChoBkdAOrbJjlPrOmgHS71oCEdAk6DgDifg8HV9lChoBkdAZWVcXWOIZmgHTegDaAhHQJOh5yzXz191fZQoaAZHQHBe63uuzQhoB00lAWgIR0CTtE51eSjhdX2UKGgGR0BuDPo/zJ6qaAdNAQFoCEdAk7VreuV5bHV9lChoBkdAcIXCvovBamgHTRYBaAhHQJO14TTOPeZ1fZQoaAZHQG9T2Y4Qz1toB029AWgIR0CTtqiW3Sa3dX2UKGgGR0Byqplum78OaAdNDwFoCEdAk7e+uJUHZHV9lChoBkdAcaqI5HVf/mgHS/toCEdAk7gOwPiDNHV9lChoBkdAcmdvUz9CNWgHTRgBaAhHQJO5B2zOX3R1fZQoaAZHQHG6ub/ffoBoB00BAWgIR0CTuS1uzhP1dX2UKGgGR0BwttF+d9UkaAdNAwFoCEdAk7rWtp22X3V9lChoBkdAb8xWSU1Q7GgHS/JoCEdAk7sbVnVXm3V9lChoBkdAcxMNCZ4Oc2gHS/poCEdAk7ze2VmjCnV9lChoBkdAcj92ll9SdmgHTSIBaAhHQJO9+uGKyfN1fZQoaAZHQG+K19F4LThoB0vsaAhHQJO/WsbNr0t1fZQoaAZHQG74/9pAUtZoB00RAWgIR0CTv+hz/6wddX2UKGgGR0Bw+OzC1qnFaAdL7GgIR0CTwG4lQdjodX2UKGgGR0BwzBdMTN+taAdNAAFoCEdAk8BuIMz/InV9lChoBkdAcWykbPyCnWgHTSgBaAhHQJPAzSa3I+51fZQoaAZHQG8sQ1aW5YpoB0v5aAhHQJPByB19v0h1fZQoaAZHQHFAMD8tPHloB0vjaAhHQJPByYc/+sJ1fZQoaAZHQHC8lrZamoBoB0vkaAhHQJPCFfb9If91fZQoaAZHQHE0Ozt1IRRoB00WAWgIR0CTwlGvOhTPdX2UKGgGR0BzHCgdwNsnaAdL4WgIR0CTwqtjCpFTdX2UKGgGR0BviIGSpzcRaAdL9GgIR0CTw1me18b8dX2UKGgGR0ByQBtqHoHLaAdL7GgIR0CTxDPuG9HudX2UKGgGR0ByTrt+kP+XaAdL9WgIR0CTxK1X/5tWdX2UKGgGR0BaGylrM1TBaAdN6ANoCEdAk8Vaguh9LHV9lChoBkdAcqDVyWAwwmgHTQwBaAhHQJPGgSCe2/l1fZQoaAZHQHMlk1VHWjJoB0v6aAhHQJPG2CWeHzp1fZQoaAZHQG0sWluWKMxoB0v5aAhHQJPIEf7rLQp1fZQoaAZHQHLQkGiYb85oB0vwaAhHQJPIuRW912d1fZQoaAZHQHIl4YixFApoB00RAWgIR0CTygLKV6eHdX2UKGgGR0BxSmUHIIWyaAdNCwFoCEdAk8olK02LpHV9lChoBkdAbxwGmk30gGgHS+5oCEdAk8pZdv863nV9lChoBkdAbi3jLjghr2gHS/RoCEdAk8rGl/H5rXV9lChoBkdAcYmE87p3YGgHTQIBaAhHQJPKxrEcbR51fZQoaAZHQHA+/fGdZq5oB00IAWgIR0CTyvRq46OpdX2UKGgGR0BtGD7sOXmeaAdL4mgIR0CTyzeWv8qGdX2UKGgGR0By5UTsY2sJaAdNQQFoCEdAk82l90A93nV9lChoBkdAbur0yP+4smgHS+9oCEdAk826nm7rcHV9lChoBkdAcCtLzwtrbmgHS/RoCEdAk8+VUEPlMnV9lChoBkdAcED1h9b5dmgHTUEBaAhHQJPQB1dPci51fZQoaAZHQHFHA+dK/VRoB00NAWgIR0CT0Cz/6wdKdX2UKGgGR0ByAtnSOR1YaAdL8GgIR0CT0Ksv7FbWdX2UKGgGR0BycgY0l7dBaAdL4GgIR0CT0LX2/SH/dX2UKGgGR0ByMFAiV0LdaAdNAwJoCEdAk9IH5eqrBHV9lChoBkdAclhuE25xzmgHS+9oCEdAk9Jt/e+EiHV9lChoBkdAcWIlC1JDmmgHS/5oCEdAk9NH++/QB3V9lChoBkdAcV6WsA/9pGgHTQgBaAhHQJPTd3+uNgl1fZQoaAZHQHABUuL74ztoB00JAWgIR0CT1E6UJOWTdX2UKGgGR0By9+a4MF2WaAdNMwFoCEdAk9Wg2qDK5nV9lChoBkdAb8Ar2g398GgHTSsBaAhHQJPV5UGVzIV1fZQoaAZHQHIwBxT850doB0v9aAhHQJPW4tuk1uR1fZQoaAZHQHK4FrVOKwZoB00fAWgIR0CT2EiC8OCodX2UKGgGR0Bsyd7SiM5waAdL9mgIR0CT2KPZqVQidX2UKGgGR0BvxfmaH9FXaAdNiwFoCEdAk9j/CqIacnV9lChoBkdAcIsYqG1x82gHS/9oCEdAk9mL655JLHV9lChoBkdAbsUwZflZHWgHS/RoCEdAk9moAbQ1JnV9lChoBkdAcUvIMSbpeWgHTRQBaAhHQJPaJ3cHnlp1fZQoaAZHQHF4Jmh/RVpoB00HAWgIR0CT2lqyWzF/dX2UKGgGR0ByBZTsIE8raAdL/2gIR0CT22jBVMmGdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c13916010bea4ee64dff8e755e348590003ccc33aed6e9ce15ce41150eb32091
3
- size 148080
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f0e06326915620f36a295cf446d4faab396957b88328cc6486008915a790625c
3
+ size 147509
ppo-LunarLander-v2/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff9429bf010>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff9429bf0a0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff9429bf130>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff9429bf1c0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7ff9429bf250>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7ff9429bf2e0>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff9429bf370>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff9429bf400>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7ff9429bf490>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff9429bf520>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff9429bf5b0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff9429bf640>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7ff9432ce580>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
@@ -26,12 +26,12 @@
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1711101580690412299,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKZ4oz0DiXK8OGRhvleSMr7QURY9koL6PgAAgD8AAIA/WiYuvloP4j5a7dc8BFFgvtVaJ72d6oa9AAAAAAAAAABt9wo+9vAtulSMSL4XVIS+jgGivNYJ77wAAAAAAAAAAM2kxjvh8/Q9a9ncPGlQhL6daX08Yvc2uwAAAAAAAAAAjdDJPcPZQ7ru9RG8Z1UettuynzpEYI01AAAAAAAAgD+AdCc9hXbau5/ZKTw1DYg8+FQ1PUbpZb0AAIA/AACAP2Ydm7yuXbC6iOJmNaDNNzCdMMg5wvigtAAAgD8AAIA/w4aCvscEHj9RRYg98Y+LvnhysL3mmc+8AAAAAAAAAADmn929y/rOPQm9Hj4kHXu+3gR1PEbCSL0AAAAAAAAAAKY91r3DBTa65j+CuiPWzrU7daQ7yRiYOQAAgD8AAAAAGqtCva6RkbpyS9S2oo2+sQAcLLj2T/k1AACAPwAAgD8oE4K++PKgP8jm3L6J7LW+jG56vnpvoL0AAAAAAAAAAI5SkL4V61Y/5JuxPT+Cj75+ULW9mt2VPQAAAAAAAAAAAIuzvHeJuD9ubrm+ll4lPkvOrDzg2TA9AAAAAAAAAADNTlO9SAmKuo2kjDQc9uCvrEgoOwJ3grMAAIA/AACAP1OtST5RrOc9vdudvrEnlr72yjK91RumPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -45,7 +45,7 @@
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCrHp2U0Nz+MAWyUS9yMAXSUR0CR+8jHn2ZidX2UKGgGR0BtyDwSamXPaAdNaQFoCEdAkfwoaYNRWXV9lChoBkdAcaSfJV81GmgHTRYBaAhHQJH9f6SDAah1fZQoaAZHQHJjM6mwaBJoB01PAWgIR0CR/6l7+kxidX2UKGgGR7//1J6IFeOXaAdNCgFoCEdAkf/dPxhDxHV9lChoBkdAcDm7Gecx02gHTXsBaAhHQJIAV7hNucd1fZQoaAZHQHGJF1bJOnFoB000AWgIR0CSAWw+MZP3dX2UKGgGR0BwRKj7ALy+aAdNUQFoCEdAkhXk2LpA2XV9lChoBkdAb87Qm/nGKmgHTUYBaAhHQJIWf1VYISl1fZQoaAZHQG9ViN0eU6hoB002AWgIR0CSGGymygPFdX2UKGgGR0ByC1I8QqZuaAdNRAFoCEdAkhiH9zfaYnV9lChoBkdAbcBq8DjioGgHTUwBaAhHQJIasqWkadd1fZQoaAZHQHFM6d6LOzJoB01TAWgIR0CSG5BhQWN4dX2UKGgGR0Bwh67iADq4aAdNQgFoCEdAkhwQYpDu0HV9lChoBkdAcEsXxOLzgGgHTT0BaAhHQJIcNweeWfN1fZQoaAZHQHC2ezposZpoB00HAWgIR0CSHk1TisGQdX2UKGgGR0BwmE7T2FnJaAdNWAFoCEdAkh5XDziCKHV9lChoBkdAb+bFy7wrlWgHTTcBaAhHQJIfPN+so2J1fZQoaAZHQG+R5J9RaX9oB01CAWgIR0CSH0XLvCuVdX2UKGgGR0BuOnQjUutfaAdNgwFoCEdAkiGHT7VJ+XV9lChoBkdAcBGqHXVbzWgHTUEBaAhHQJIij8iwB5p1fZQoaAZHQHAWFJ6IFeRoB00/AWgIR0CSIxndO6/ZdX2UKGgGR0BuasEcKgIyaAdN7AJoCEdAkiMlc2R7q3V9lChoBkdAZborZrYXf2gHTegDaAhHQJIjuj1wo9d1fZQoaAZHQGXWeglF+d9oB03oA2gIR0CSI9cwQDmsdX2UKGgGR0BvMHxYq5LAaAdNUgFoCEdAkiVY5ggHNXV9lChoBkdAbqOAksz2vmgHTWoBaAhHQJImRYPoV211fZQoaAZHQG5j4bsF+uxoB01HAWgIR0CSJt+fAbhndX2UKGgGR0BxJWzLOiWWaAdNPQFoCEdAkicyNfgJkXV9lChoBkdAcqZ9Jz1bq2gHTUwBaAhHQJIoDjvNNah1fZQoaAZHQB/IUahpQDVoB00VAWgIR0CSKBuNgjQidX2UKGgGR0BvgKqhlDneaAdNMAFoCEdAkijpiAlOXXV9lChoBkdAckp9LHuJDWgHTW8BaAhHQJIpLyI55qx1fZQoaAZHQG9QOHWSU1RoB00tAWgIR0CSKYWKdhAodX2UKGgGR0Bx89Kg7HQyaAdNVQFoCEdAkiq3hCMP0HV9lChoBkdAb26TNdJJ5GgHTUkBaAhHQJIu3HsC1Z11fZQoaAZHQHJMiKrJbMZoB01QAWgIR0CSMFgLZzxPdX2UKGgGR0Bwv4tWdVebaAdNaAFoCEdAkjILIDHOr3V9lChoBkdAcDH7fYSQHWgHTaoBaAhHQJIyPQSi/PB1fZQoaAZHQHGTPustCiRoB01MAWgIR0CSMxE2Hck/dX2UKGgGR0A6IZ4Oc2BKaAdNFQFoCEdAkjSgB1cMVnV9lChoBkdAbOehRqGlAWgHTa4BaAhHQJI07Dk2gnN1fZQoaAZHQHFW+HJtBOZoB01YAWgIR0CSNU6aLGaQdX2UKGgGR0BrgWdRR/EwaAdNWgFoCEdAkjYS2x6fJ3V9lChoBkdAcQ+RmK64D2gHTW0BaAhHQJI3LPZ7HAB1fZQoaAZHQHAYN9ph4MZoB01SAWgIR0CSNzezD4xldX2UKGgGR0BykLpdKNADaAdNWwFoCEdAkjlPlyR0VHV9lChoBkdAcJRNWU8mr2gHTUgBaAhHQJI6DqdH2AZ1fZQoaAZHQHHZgCwKSgZoB02AAWgIR0CSOjp0wJw9dX2UKGgGR0BuBpqbjLjhaAdNvwFoCEdAkjxAOz6acHV9lChoBkdActgeHi3ocWgHTUIBaAhHQJI9VzltCRh1fZQoaAZHQHMBki6g/TtoB007AWgIR0CST5I3zcyndX2UKGgGR0BuaafOD8LsaAdNOgFoCEdAklCkl/pdKXV9lChoBkdAb+eqfe1rqWgHTT4BaAhHQJJRjNC7btZ1fZQoaAZHQG7P9eQdS2poB00sAWgIR0CSUzhXr+o+dX2UKGgGR0ByGeNFSbYsaAdNUwFoCEdAklN57XxvvXV9lChoBkdAcGasYl6Z6WgHTYABaAhHQJJTp4FA3UB1fZQoaAZHQHGiViSaEzxoB01jAWgIR0CSVI7ALy+YdX2UKGgGR0BwvC+De0ojaAdNQQFoCEdAklU6Xa8HwHV9lChoBkdAb+LB9kSVW2gHTYQBaAhHQJJVljwx33Z1fZQoaAZHQHFfKVlf7aZoB01TAWgIR0CSVd2fTTfBdX2UKGgGR0BwmgHdGiHqaAdNEgFoCEdAklZa4H5aeXV9lChoBkdAa8a1Cw8nu2gHTUIBaAhHQJJXWMvRJEp1fZQoaAZHQHDH3DNyHVRoB01EAWgIR0CSWE1Q66redX2UKGgGR0BwCtZEDyOJaAdNQQFoCEdAkls94/u9e3V9lChoBkdAYfhu+AVfu2gHTegDaAhHQJJbxv73wkR1fZQoaAZHQHIRY/u9eyBoB01NAWgIR0CSXGsO5J9RdX2UKGgGR0Bv/j7sOXmeaAdNSQFoCEdAkl1I7/4qPXV9lChoBkdAbAi/ATIvJ2gHTZsBaAhHQJJd8mNR3vB1fZQoaAZHQG9aGEf1YhdoB00lAWgIR0CSXqtAcDKYdX2UKGgGR0Bwp3GACnxbaAdNTwFoCEdAkl64WHk92XV9lChoBkdAcectHQQcxWgHTSMBaAhHQJJe3K9wm3R1fZQoaAZHQHDi/boKUmloB007AWgIR0CSYBMkhRqHdX2UKGgGR0BtE9u5z5oHaAdNGQFoCEdAkmEcSwnpjnV9lChoBkdAcLwfiPyTZGgHTTYBaAhHQJJiBggHNX51fZQoaAZHQHC2xj4HooxoB01JAWgIR0CSYm9kjHGTdX2UKGgGR0By6j7oB7u2aAdNaQFoCEdAkmMdUXHim3V9lChoBkdAcelL8rI5pGgHTUcBaAhHQJJjr5Ec81Z1fZQoaAZHQHFFQ4S6DoRoB00uAWgIR0CSZPrRSgoPdX2UKGgGR0Bwp3ZIxxkvaAdNWQFoCEdAkmW9AX2ugnV9lChoBkdATMoN7SiM52gHS+doCEdAkmgX6InBtXV9lChoBkdAcmZG1x82JmgHTUEBaAhHQJJokUQCjlB1fZQoaAZHQHFXwn6VMVVoB00qAWgIR0CSaacLSeAedX2UKGgGR0BuI5kNFz+4aAdNMQFoCEdAkmpvlp48l3V9lChoBkdAcHYEKVpsXWgHTVYBaAhHQJJqmqlxffJ1fZQoaAZHQHKglEuxrzpoB01uAWgIR0CSat4Uvf0mdX2UKGgGR0BxI7q4YrJ9aAdNFAFoCEdAkmsmKyfL93V9lChoBkdAU19ZHNHH3mgHS/doCEdAkmv8XenAI3V9lChoBkdAcBLKTjebeGgHTRsBaAhHQJJsKQMhHLB1fZQoaAZHQHEoYZAIIGBoB01wAWgIR0CSbTVARkEtdX2UKGgGR0BxrrK5kK/maAdNJwFoCEdAkm6zuF6Av3V9lChoBkdAbGAf9P1tf2gHTUIBaAhHQJJvM5q/M4d1fZQoaAZHQG+qf7JnxrloB01kAWgIR0CSb3yAQQMAdX2UKGgGR0BrWATGo73gaAdNwwFoCEdAknAv779AHHV9lChoBkdAMFJdv863iWgHS95oCEdAknCA1WKdhHV9lChoBkdAa5S+B6KLsWgHTTUBaAhHQJJwrHCGetl1fZQoaAZHQHHrMm4RVZNoB001AWgIR0CScydwvQF+dX2UKGgGR0ByTNkYoAn2aAdNDwFoCEdAknNFKbrkbXV9lChoBkdAcQCD/EOy3WgHTSQBaAhHQJJ1Jj8UEgZ1fZQoaAZHQHGP0mdAgPpoB01GAWgIR0CSduQcPvrodWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6b3c44d240>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6b3c44d2d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6b3c44d360>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6b3c44d3f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6b3c44d480>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6b3c44d510>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6b3c44d5a0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6b3c44d630>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6b3c44d6c0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6b3c44d750>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6b3c44d7e0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6b3c44d870>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f6b3c3eb1c0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
 
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1711613285430125063,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0sO7v2THG6dftQvc9RBTPdHjc63PUgsgAAgD8AAIA/mgtTPBREhLqWUcOydENcsJQ9ILh7cKYzAACAPwAAgD/N8ns9iMKyPUsmXb5ekkm+cgRzu7ICRb0AAAAAAAAAAABlyrw4BKw/GWpDvg5Tv76jFG69VlNuvgAAAAAAAAAAALCeOrykNj3IBN+9DyA1vqPKgD1itY+8AAAAAAAAAADmqjA9K1UHP4JB8LwvWdm+U8FFPfDTlrsAAAAAAAAAAJrJuTspgGy61wiMOTduIDX0cI07D1OguAAAgD8AAIA/mi0VPaQAQblqIPa8+aOEsBYEOzlF4lkzAACAPwAAgD/ajfc9zxF6Psmjg74yGVm+q/fHPB/By70AAAAAAAAAAForzz2Awxg/ZSQkvl3Swb5OeNA9hrgQvgAAAAAAAAAATdmgPXGNebn+Zpa2ZtHOMPHsATqg2Lg1AACAPwAAAACgLB0+uyuSP903iD57sg2/pxs0PkSgqD0AAAAAAAAAAM0UxTvYhzc/KnoyPvfgBb8k+zu9XrJ2PQAAAAAAAAAA8/eBvkxFBD+KSSU+0Mu2vknA+L3fahU+AAAAAAAAAAAt8U8+kXt6Pyg1zT6Tmgu/yEB+Pqh41boAAAAAAAAAABoMvD21Xzk/rWCZPQrbwL60SOk9RaPSPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVEwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGxmExh2GIuMAWyUTSgBjAF0lEdAk4SGFi8WbnV9lChoBkdAcTgwQDmr82gHS+ZoCEdAk4WFYEGJN3V9lChoBkdAcwsK508vEmgHS9xoCEdAk4Zucx0uDnV9lChoBkdAcv+LGJememgHTRsBaAhHQJOG2P2f0291fZQoaAZHQG/E8LKFIupoB0vuaAhHQJOH6ymhufp1fZQoaAZHQHKKL52yLQ5oB00DAWgIR0CTiK1/Ue+3dX2UKGgGR0BxprpJPIn0aAdL7mgIR0CTilqN6w+udX2UKGgGR0By4bIjnmq6aAdNOAFoCEdAk4p68L8aXXV9lChoBkdAbdunF5v9+GgHTWoBaAhHQJOLLb349HN1fZQoaAZHQHInSLQ5WBBoB00KAWgIR0CTi8MC9ytFdX2UKGgGR0BwxmvPkaMraAdNFgFoCEdAk4x76k6903V9lChoBkdAb/Knpjc2zmgHS+BoCEdAk4yvVZs9CHV9lChoBkdAcHnVJcxCY2gHTQMBaAhHQJON2MNtqHp1fZQoaAZHQHAA7lmvnr9oB0vgaAhHQJOO73PAwf11fZQoaAZHQHFL5rLyMDRoB0vraAhHQJOPDQID5j91fZQoaAZHQHD+WVeKKpFoB00oAWgIR0CTjyWHUMG5dX2UKGgGR0BzvWjBVMmGaAdL9GgIR0CTkOkUbkwOdX2UKGgGR0BwPckTpPhyaAdNFwFoCEdAk5GaFRHf/HV9lChoBkdAcq5ePJaJRGgHS/RoCEdAk5IHenAIp3V9lChoBkdAcrvZYxL0z2gHTRQBaAhHQJOSdcxCY1J1fZQoaAZHQHHMAbyYoiNoB0vyaAhHQJOShaOgg5l1fZQoaAZHQHHmSDEm6XloB00BAWgIR0CTlDtsenyedX2UKGgGR0ByJ8YbbUPQaAdL32gIR0CTlJgg5imVdX2UKGgGR0ByGoCcPOIJaAdL8GgIR0CTlLZK3/gjdX2UKGgGR0By6pFnZkCnaAdL4GgIR0CTlktRNyo5dX2UKGgGR0BxFsmUnogWaAdNKQFoCEdAk5Z8sUZeiXV9lChoBkdAcSYfTkQwsWgHTTABaAhHQJOX/9zfaYh1fZQoaAZHQHAe53C9AX5oB0vzaAhHQJOYiiM5wOx1fZQoaAZHQHCYe1fE4vNoB00IAWgIR0CTmU1yeZogdX2UKGgGR0Bv+xwCKaXsaAdNGAFoCEdAk5nTWK/EfnV9lChoBkdAcPVZzPrv9mgHS+FoCEdAk5qHTmW+oXV9lChoBkdAclJVRk3CK2gHS/toCEdAk5rZzDGcWnV9lChoBkdAb8bn5i3G42gHS+VoCEdAk5uFa4c3l3V9lChoBkdAb1TlNDc/MWgHTQQBaAhHQJOc0RZlnRN1fZQoaAZHQHE8uiN83MpoB0vjaAhHQJOdqoDPnjh1fZQoaAZHQG6sVDa4+bFoB0vzaAhHQJOeNLoOhCd1fZQoaAZHQHKz0nkT6BRoB00GAWgIR0CTnqx95QgtdX2UKGgGR0BxClM/QjUvaAdNAgFoCEdAk6DSWAwwkHV9lChoBkdAOrbJjlPrOmgHS71oCEdAk6DgDifg8HV9lChoBkdAZWVcXWOIZmgHTegDaAhHQJOh5yzXz191fZQoaAZHQHBe63uuzQhoB00lAWgIR0CTtE51eSjhdX2UKGgGR0BuDPo/zJ6qaAdNAQFoCEdAk7VreuV5bHV9lChoBkdAcIXCvovBamgHTRYBaAhHQJO14TTOPeZ1fZQoaAZHQG9T2Y4Qz1toB029AWgIR0CTtqiW3Sa3dX2UKGgGR0Byqplum78OaAdNDwFoCEdAk7e+uJUHZHV9lChoBkdAcaqI5HVf/mgHS/toCEdAk7gOwPiDNHV9lChoBkdAcmdvUz9CNWgHTRgBaAhHQJO5B2zOX3R1fZQoaAZHQHG6ub/ffoBoB00BAWgIR0CTuS1uzhP1dX2UKGgGR0BwttF+d9UkaAdNAwFoCEdAk7rWtp22X3V9lChoBkdAb8xWSU1Q7GgHS/JoCEdAk7sbVnVXm3V9lChoBkdAcxMNCZ4Oc2gHS/poCEdAk7ze2VmjCnV9lChoBkdAcj92ll9SdmgHTSIBaAhHQJO9+uGKyfN1fZQoaAZHQG+K19F4LThoB0vsaAhHQJO/WsbNr0t1fZQoaAZHQG74/9pAUtZoB00RAWgIR0CTv+hz/6wddX2UKGgGR0Bw+OzC1qnFaAdL7GgIR0CTwG4lQdjodX2UKGgGR0BwzBdMTN+taAdNAAFoCEdAk8BuIMz/InV9lChoBkdAcWykbPyCnWgHTSgBaAhHQJPAzSa3I+51fZQoaAZHQG8sQ1aW5YpoB0v5aAhHQJPByB19v0h1fZQoaAZHQHFAMD8tPHloB0vjaAhHQJPByYc/+sJ1fZQoaAZHQHC8lrZamoBoB0vkaAhHQJPCFfb9If91fZQoaAZHQHE0Ozt1IRRoB00WAWgIR0CTwlGvOhTPdX2UKGgGR0BzHCgdwNsnaAdL4WgIR0CTwqtjCpFTdX2UKGgGR0BviIGSpzcRaAdL9GgIR0CTw1me18b8dX2UKGgGR0ByQBtqHoHLaAdL7GgIR0CTxDPuG9HudX2UKGgGR0ByTrt+kP+XaAdL9WgIR0CTxK1X/5tWdX2UKGgGR0BaGylrM1TBaAdN6ANoCEdAk8Vaguh9LHV9lChoBkdAcqDVyWAwwmgHTQwBaAhHQJPGgSCe2/l1fZQoaAZHQHMlk1VHWjJoB0v6aAhHQJPG2CWeHzp1fZQoaAZHQG0sWluWKMxoB0v5aAhHQJPIEf7rLQp1fZQoaAZHQHLQkGiYb85oB0vwaAhHQJPIuRW912d1fZQoaAZHQHIl4YixFApoB00RAWgIR0CTygLKV6eHdX2UKGgGR0BxSmUHIIWyaAdNCwFoCEdAk8olK02LpHV9lChoBkdAbxwGmk30gGgHS+5oCEdAk8pZdv863nV9lChoBkdAbi3jLjghr2gHS/RoCEdAk8rGl/H5rXV9lChoBkdAcYmE87p3YGgHTQIBaAhHQJPKxrEcbR51fZQoaAZHQHA+/fGdZq5oB00IAWgIR0CTyvRq46OpdX2UKGgGR0BtGD7sOXmeaAdL4mgIR0CTyzeWv8qGdX2UKGgGR0By5UTsY2sJaAdNQQFoCEdAk82l90A93nV9lChoBkdAbur0yP+4smgHS+9oCEdAk826nm7rcHV9lChoBkdAcCtLzwtrbmgHS/RoCEdAk8+VUEPlMnV9lChoBkdAcED1h9b5dmgHTUEBaAhHQJPQB1dPci51fZQoaAZHQHFHA+dK/VRoB00NAWgIR0CT0Cz/6wdKdX2UKGgGR0ByAtnSOR1YaAdL8GgIR0CT0Ksv7FbWdX2UKGgGR0BycgY0l7dBaAdL4GgIR0CT0LX2/SH/dX2UKGgGR0ByMFAiV0LdaAdNAwJoCEdAk9IH5eqrBHV9lChoBkdAclhuE25xzmgHS+9oCEdAk9Jt/e+EiHV9lChoBkdAcWIlC1JDmmgHS/5oCEdAk9NH++/QB3V9lChoBkdAcV6WsA/9pGgHTQgBaAhHQJPTd3+uNgl1fZQoaAZHQHABUuL74ztoB00JAWgIR0CT1E6UJOWTdX2UKGgGR0By9+a4MF2WaAdNMwFoCEdAk9Wg2qDK5nV9lChoBkdAb8Ar2g398GgHTSsBaAhHQJPV5UGVzIV1fZQoaAZHQHIwBxT850doB0v9aAhHQJPW4tuk1uR1fZQoaAZHQHK4FrVOKwZoB00fAWgIR0CT2EiC8OCodX2UKGgGR0Bsyd7SiM5waAdL9mgIR0CT2KPZqVQidX2UKGgGR0BvxfmaH9FXaAdNiwFoCEdAk9j/CqIacnV9lChoBkdAcIsYqG1x82gHS/9oCEdAk9mL655JLHV9lChoBkdAbsUwZflZHWgHS/RoCEdAk9moAbQ1JnV9lChoBkdAcUvIMSbpeWgHTRQBaAhHQJPaJ3cHnlp1fZQoaAZHQHF4Jmh/RVpoB00HAWgIR0CT2lqyWzF/dX2UKGgGR0ByBZTsIE8raAdL/2gIR0CT22jBVMmGdWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:59fc6aaa22af1f66ea7f63fc0105d550b6dd5cce67abb7393105ce7f5bf2620e
3
- size 88362
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99972e4c7f996acfe2daaf0a76d4e5c9264bc772298eff395f79b7dd86dda8d9
3
+ size 87978
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3378d9e35bf0c8ecdd91c2dae54ed6e8d3561ffd0d8f11144a5a1a99d1ad6f42
3
- size 43762
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:272b22723f67afc88483d76d7a72e8eb861e96e9cbe41e163d4997b4ed2b00cd
3
+ size 43634
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -2,7 +2,7 @@
2
  - Python: 3.10.12
3
  - Stable-Baselines3: 2.0.0a5
4
  - PyTorch: 2.2.1+cu121
5
- - GPU Enabled: True
6
  - Numpy: 1.25.2
7
  - Cloudpickle: 2.2.1
8
  - Gymnasium: 0.28.1
 
2
  - Python: 3.10.12
3
  - Stable-Baselines3: 2.0.0a5
4
  - PyTorch: 2.2.1+cu121
5
+ - GPU Enabled: False
6
  - Numpy: 1.25.2
7
  - Cloudpickle: 2.2.1
8
  - Gymnasium: 0.28.1
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"env_id": "LunarLander-v2", "mean_reward": -178.89659607463915, "std_reward": 91.64157286450849, "n_evaluation_episodes": 10, "eval_datetime": "2024-03-28T08:01:26.074397"}
 
1
+ {"mean_reward": 262.0526387107722, "std_reward": 13.724636597635042, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-28T08:31:08.423681"}