omarelshehy
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,67 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
base model name : Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2
|
6 |
-
dataset : Arabic-mmarco-triplet ( 1 million random sample)
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- ar
|
5 |
+
pipeline_tag: text-classification
|
6 |
+
library_name: transformers
|
7 |
+
base_model:
|
8 |
+
- Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2
|
9 |
+
tags:
|
10 |
+
- reranking
|
11 |
+
- sentence-transformers
|
12 |
+
datasets:
|
13 |
+
- unicamp-dl/mmarco
|
14 |
---
|
15 |
|
16 |
+
# GATE-Reranker-V1 🚀✨
|
17 |
+
|
18 |
+
**NAMAA-space** releases **Rerankerv1**, a high-performance model fine-tuned on [unicamp-dl/mmarco](https://huggingface.co/datasets/unicamp-dl/mmarco) to elevate Arabic document retrieval and ranking to new heights! 📚🇸🇦
|
19 |
+
|
20 |
+
This model is designed to **improve search relevance** of **arabic** documents by accurately ranking documents based on their contextual fit for a given query.
|
21 |
+
|
22 |
+
## Key Features 🔑
|
23 |
+
|
24 |
+
- **Optimized for Arabic**: Built on the highly performant [Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2](https://huggingface.co/Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2) with exclusivly rich Arabic data.
|
25 |
+
- **Advanced Document Ranking**: Ranks results with precision, perfect for search engines, recommendation systems, and question-answering applications.
|
26 |
+
- **State-of-the-Art Performance**: Achieves excellent performance compared to famous rerankers(See [Evaluation](https://huggingface.co/NAMAA-Space/GATE-Reranker-V1#evaluation)), ensuring reliable relevance and precision.
|
27 |
+
|
28 |
+
## Example Use Cases 💼
|
29 |
+
|
30 |
+
- **Retrieval Augmented Generation**: Improve search result relevance for Arabic content.
|
31 |
+
- **Content Recommendation**: Deliver top-tier Arabic content suggestions.
|
32 |
+
- **Question Answering**: Boost answer retrieval quality in Arabic-focused systems.
|
33 |
+
|
34 |
+
## Usage
|
35 |
+
|
36 |
+
# Within sentence-transformers
|
37 |
+
The usage becomes easier when you have [SentenceTransformers](https://www.sbert.net/) installed. Then, you can use the pre-trained models like this:
|
38 |
+
|
39 |
+
```python
|
40 |
+
from sentence_transformers import CrossEncoder
|
41 |
+
model = CrossEncoder('NAMAA-Space/Rerankerv1', max_length=512)
|
42 |
+
|
43 |
+
Query = 'كيف يمكن استخدام التعلم العميق في معالجة الصور الطبية؟'
|
44 |
+
Paragraph1 = 'التعلم العميق يساعد في تحليل الصور الطبية وتشخيص الأمراض'
|
45 |
+
Paragraph2 = 'الذكاء الاصطناعي يستخدم في تحسين الإنتاجية في الصناعات'
|
46 |
+
|
47 |
+
scores = model.predict([(Query, Paragraph1), (Query, Paragraph2)])
|
48 |
+
```
|
49 |
+
|
50 |
+
## Evaluation
|
51 |
+
|
52 |
+
We evaluate our model on two different datasets using the metrics **MAP**, **MRR** and **NDCG@10**:
|
53 |
+
|
54 |
+
The purpose of this evaluation is to highlight the performance of our model with regards to: Relevant/Irrelevant labels and positive/multiple negatives documents:
|
55 |
+
|
56 |
+
Dataset 1: [NAMAA-Space/Ar-Reranking-Eval](https://huggingface.co/datasets/NAMAA-Space/Ar-Reranking-Eval)
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
Dataset 2: [NAMAA-Space/Arabic-Reranking-Triplet-5-Eval](https://huggingface.co/datasets/NAMAA-Space/Arabic-Reranking-Triplet-5-Eval)
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
As seen, The model performs extremly well in comparison to other famous rerankers.
|
65 |
+
|
66 |
base model name : Omartificial-Intelligence-Space/Arabic-Triplet-Matryoshka-V2
|
67 |
+
dataset : Arabic-mmarco-triplet ( 1 million random sample)
|