File size: 6,663 Bytes
2637e65
 
 
30a6cd0
2637e65
 
 
 
 
 
e47cf8b
e56ddce
184eabb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2637e65
 
30a6cd0
2637e65
 
 
95fde96
2637e65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30a6cd0
2637e65
 
 
30a6cd0
2637e65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30a6cd0
2637e65
 
 
184eabb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
---
language:
- en
- ko
license: llama3.1
tags:
- llama-3.1
- ncsoft
- varco
base_model:
- meta-llama/Meta-Llama-3.1-8B
library_name: transformers
model-index:
- name: Llama-VARCO-8B-Instruct
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 44.7
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=NCSOFT/Llama-VARCO-8B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 29.18
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=NCSOFT/Llama-VARCO-8B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 9.97
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=NCSOFT/Llama-VARCO-8B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 6.26
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=NCSOFT/Llama-VARCO-8B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 10.78
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=NCSOFT/Llama-VARCO-8B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 24.33
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=NCSOFT/Llama-VARCO-8B-Instruct
      name: Open LLM Leaderboard
---

## Llama-VARCO-8B-Instruct

### About the Model

**Llama-VARCO-8B-Instruct** is a *generative model* built with Llama, specifically designed to excel in Korean through additional training. The model uses continual pre-training with both Korean and English datasets to enhance its understanding and generation capabilites in Korean, while also maintaining its proficiency in English. It performs supervised fine-tuning (SFT) and direct preference optimization (DPO) in Korean to align with human preferences.

- **Developed by:** NC Research, Language Model Team
- **Languages (NLP):** Korean, English
- **License:** LLAMA 3.1 COMMUNITY LICENSE AGREEMENT
- **Base model:** [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B)

## Uses

### Direct Use

We recommend to use transformers v4.43.0 or later, as advised for Llama-3.1.

```python
  from transformers import AutoTokenizer, AutoModelForCausalLM
  import torch

  model = AutoModelForCausalLM.from_pretrained(
      "NCSOFT/Llama-VARCO-8B-Instruct",
      torch_dtype=torch.bfloat16,
      device_map="auto"
  )
  tokenizer = AutoTokenizer.from_pretrained("NCSOFT/Llama-VARCO-8B-Instruct")

  messages = [
      {"role": "system", "content": "You are a helpful assistant Varco. Respond accurately and diligently according to the user's instructions."},
      {"role": "user", "content": "์•ˆ๋…•ํ•˜์„ธ์š”."}
  ]

  inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device)

  eos_token_id = [
        tokenizer.eos_token_id,
        tokenizer.convert_tokens_to_ids("<|eot_id|>")
  ]
  
  outputs = model.generate(
      inputs,
      eos_token_id=eos_token_id,
      max_length=8192
  )

  print(tokenizer.decode(outputs[0]))
```

## Evaluation

### LogicKor

We used the [LogicKor](https://github.com/instructkr/LogicKor) code to measure performance. For the judge model, we used the officially recommended gpt-4-1106-preview. The score includes only the 0-shot evaluation provided in the default.

| Model        |  Math  |  Reasoning  |  Writing  |  Coding  |  Understanding  |  Grammer  |  Single turn  |  Multi turn  |  Overall  |
|--------------|--------|-------------|-----------|----------|-----------------|-----------|---------------|--------------|-----------|
| [Llama-VARCO-8B-Instruct](https://huggingface.co/NCSOFT/Llama-VARCO-8B-Instruct)| 6.71 / 8.57 | 8.86 / 8.29 | 9.86 / 9.71 | 8.86 / 9.29 | 9.29 / 10.0 | 8.57 / 7.86 | 8.69 | 8.95 | 8.82 |
| [EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct)| 6.86 / 7.71 | 8.57 / 6.71 | 10.0 / 9.29 | 9.43 / 10.0 | 10.0 / 10.0 | 9.57 / 5.14 | 9.07 | 8.14 | 8.61 |
| [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)| 4.29 / 4.86  | 6.43 / 6.57 | 6.71 / 5.14 | 6.57 / 6.00 | 4.29 / 4.14 | 6.00 / 4.00 | 5.71 | 5.12 | 5.42 |
| [Gemma-2-9B-Instruct](https://huggingface.co/google/gemma-2-9b-it)| 6.14 / 5.86 | 9.29 / 9.0 | 9.29 / 8.57 | 9.29 / 9.14 | 8.43 / 8.43 | 7.86 / 4.43 | 8.38 | 7.57 | 7.98
| [Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct)| 5.57 / 4.86 | 7.71 / 6.43 | 7.43 / 7.00 | 7.43 / 8.00 | 7.86 / 8.71 | 6.29 / 3.29 | 7.05 | 6.38 | 6.71 |
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/NCSOFT__Llama-VARCO-8B-Instruct-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=NCSOFT/Llama-VARCO-8B-Instruct)!

|      Metric       |% Value|
|-------------------|------:|
|Avg.               |  20.87|
|IFEval (0-Shot)    |  44.70|
|BBH (3-Shot)       |  29.18|
|MATH Lvl 5 (4-Shot)|   9.97|
|GPQA (0-shot)      |   6.26|
|MuSR (0-shot)      |  10.78|
|MMLU-PRO (5-shot)  |  24.33|