AppleTree2017
commited on
Commit
·
63c612e
1
Parent(s):
007a440
NHS-BiomedNLP-BiomedBERT-hypop-512
Browse files- README.md +68 -68
- config.json +34 -34
- runs/Apr28_15-03-26_NCATS-2265430-P/events.out.tfevents.1714484123.NCATS-2265430-P.5044.1 +3 -0
- special_tokens_map.json +7 -7
- tokenizer_config.json +57 -57
README.md
CHANGED
@@ -1,68 +1,68 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
base_model: microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract
|
4 |
-
tags:
|
5 |
-
- generated_from_trainer
|
6 |
-
metrics:
|
7 |
-
- accuracy
|
8 |
-
- precision
|
9 |
-
- recall
|
10 |
-
- f1
|
11 |
-
model-index:
|
12 |
-
- name: NHS-BiomedNLP-BiomedBERT-hypop-512
|
13 |
-
results: []
|
14 |
-
---
|
15 |
-
|
16 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
-
should probably proofread and complete it, then remove this comment. -->
|
18 |
-
|
19 |
-
# NHS-BiomedNLP-BiomedBERT-hypop-512
|
20 |
-
|
21 |
-
This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract) on the None dataset.
|
22 |
-
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.
|
24 |
-
- Accuracy: 0.
|
25 |
-
- Precision: 0.
|
26 |
-
- Recall: 0.
|
27 |
-
- F1: 0.
|
28 |
-
|
29 |
-
## Model description
|
30 |
-
|
31 |
-
More information needed
|
32 |
-
|
33 |
-
## Intended uses & limitations
|
34 |
-
|
35 |
-
More information needed
|
36 |
-
|
37 |
-
## Training and evaluation data
|
38 |
-
|
39 |
-
More information needed
|
40 |
-
|
41 |
-
## Training procedure
|
42 |
-
|
43 |
-
### Training hyperparameters
|
44 |
-
|
45 |
-
The following hyperparameters were used during training:
|
46 |
-
- learning_rate: 3e-05
|
47 |
-
- train_batch_size: 16
|
48 |
-
- eval_batch_size: 16
|
49 |
-
- seed: 42
|
50 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
-
- lr_scheduler_type: linear
|
52 |
-
- num_epochs: 6
|
53 |
-
|
54 |
-
### Training results
|
55 |
-
|
56 |
-
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
57 |
-
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
58 |
-
| 0.124 | 1.0 | 397 | 0.4029 | 0.8177 | 0.8146 | 0.8129 | 0.8137 |
|
59 |
-
| 0.0594 | 2.0 | 794 | 0.4561 | 0.8246 | 0.8245 | 0.8161 | 0.8192 |
|
60 |
-
| 0.1105 | 3.0 | 1191 | 0.5390 | 0.8120 | 0.8119 | 0.8028 | 0.8059 |
|
61 |
-
|
62 |
-
|
63 |
-
### Framework versions
|
64 |
-
|
65 |
-
- Transformers 4.38.2
|
66 |
-
- Pytorch 2.2.2+cpu
|
67 |
-
- Datasets 2.18.0
|
68 |
-
- Tokenizers 0.15.2
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
model-index:
|
12 |
+
- name: NHS-BiomedNLP-BiomedBERT-hypop-512
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# NHS-BiomedNLP-BiomedBERT-hypop-512
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract) on the None dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.3839
|
24 |
+
- Accuracy: 0.8269
|
25 |
+
- Precision: 0.8228
|
26 |
+
- Recall: 0.8237
|
27 |
+
- F1: 0.8232
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 3e-05
|
47 |
+
- train_batch_size: 16
|
48 |
+
- eval_batch_size: 16
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 6
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
58 |
+
| 0.124 | 1.0 | 397 | 0.4029 | 0.8177 | 0.8146 | 0.8129 | 0.8137 |
|
59 |
+
| 0.0594 | 2.0 | 794 | 0.4561 | 0.8246 | 0.8245 | 0.8161 | 0.8192 |
|
60 |
+
| 0.1105 | 3.0 | 1191 | 0.5390 | 0.8120 | 0.8119 | 0.8028 | 0.8059 |
|
61 |
+
|
62 |
+
|
63 |
+
### Framework versions
|
64 |
+
|
65 |
+
- Transformers 4.38.2
|
66 |
+
- Pytorch 2.2.2+cpu
|
67 |
+
- Datasets 2.18.0
|
68 |
+
- Tokenizers 0.15.2
|
config.json
CHANGED
@@ -1,34 +1,34 @@
|
|
1 |
-
{
|
2 |
-
"_name_or_path": "microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract",
|
3 |
-
"architectures": [
|
4 |
-
"BertForSequenceClassification"
|
5 |
-
],
|
6 |
-
"attention_probs_dropout_prob": 0.1,
|
7 |
-
"classifier_dropout": null,
|
8 |
-
"hidden_act": "gelu",
|
9 |
-
"hidden_dropout_prob": 0.1,
|
10 |
-
"hidden_size": 768,
|
11 |
-
"id2label": {
|
12 |
-
"0": "the paper is not a primary experimental study in rare disease or the study is not directly investigating the natural history of a disease",
|
13 |
-
"1": "its primary contribution centers on observing the time course of a rare disease"
|
14 |
-
},
|
15 |
-
"initializer_range": 0.02,
|
16 |
-
"intermediate_size": 3072,
|
17 |
-
"label2id": {
|
18 |
-
"its primary contribution centers on observing the time course of a rare disease": 1,
|
19 |
-
"the paper is not a primary experimental study in rare disease or the study is not directly investigating the natural history of a disease": 0
|
20 |
-
},
|
21 |
-
"layer_norm_eps": 1e-12,
|
22 |
-
"max_position_embeddings": 512,
|
23 |
-
"model_type": "bert",
|
24 |
-
"num_attention_heads": 12,
|
25 |
-
"num_hidden_layers": 12,
|
26 |
-
"pad_token_id": 0,
|
27 |
-
"position_embedding_type": "absolute",
|
28 |
-
"problem_type": "single_label_classification",
|
29 |
-
"torch_dtype": "float32",
|
30 |
-
"transformers_version": "4.38.2",
|
31 |
-
"type_vocab_size": 2,
|
32 |
-
"use_cache": true,
|
33 |
-
"vocab_size": 30522
|
34 |
-
}
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract",
|
3 |
+
"architectures": [
|
4 |
+
"BertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 768,
|
11 |
+
"id2label": {
|
12 |
+
"0": "the paper is not a primary experimental study in rare disease or the study is not directly investigating the natural history of a disease",
|
13 |
+
"1": "its primary contribution centers on observing the time course of a rare disease"
|
14 |
+
},
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 3072,
|
17 |
+
"label2id": {
|
18 |
+
"its primary contribution centers on observing the time course of a rare disease": 1,
|
19 |
+
"the paper is not a primary experimental study in rare disease or the study is not directly investigating the natural history of a disease": 0
|
20 |
+
},
|
21 |
+
"layer_norm_eps": 1e-12,
|
22 |
+
"max_position_embeddings": 512,
|
23 |
+
"model_type": "bert",
|
24 |
+
"num_attention_heads": 12,
|
25 |
+
"num_hidden_layers": 12,
|
26 |
+
"pad_token_id": 0,
|
27 |
+
"position_embedding_type": "absolute",
|
28 |
+
"problem_type": "single_label_classification",
|
29 |
+
"torch_dtype": "float32",
|
30 |
+
"transformers_version": "4.38.2",
|
31 |
+
"type_vocab_size": 2,
|
32 |
+
"use_cache": true,
|
33 |
+
"vocab_size": 30522
|
34 |
+
}
|
runs/Apr28_15-03-26_NCATS-2265430-P/events.out.tfevents.1714484123.NCATS-2265430-P.5044.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8fc586a12c95ca5d8213c6de60c3e23695bbecfa1bbf23ba9df0030edf47d36e
|
3 |
+
size 560
|
special_tokens_map.json
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
{
|
2 |
-
"cls_token": "[CLS]",
|
3 |
-
"mask_token": "[MASK]",
|
4 |
-
"pad_token": "[PAD]",
|
5 |
-
"sep_token": "[SEP]",
|
6 |
-
"unk_token": "[UNK]"
|
7 |
-
}
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer_config.json
CHANGED
@@ -1,57 +1,57 @@
|
|
1 |
-
{
|
2 |
-
"added_tokens_decoder": {
|
3 |
-
"0": {
|
4 |
-
"content": "[PAD]",
|
5 |
-
"lstrip": false,
|
6 |
-
"normalized": false,
|
7 |
-
"rstrip": false,
|
8 |
-
"single_word": false,
|
9 |
-
"special": true
|
10 |
-
},
|
11 |
-
"1": {
|
12 |
-
"content": "[UNK]",
|
13 |
-
"lstrip": false,
|
14 |
-
"normalized": false,
|
15 |
-
"rstrip": false,
|
16 |
-
"single_word": false,
|
17 |
-
"special": true
|
18 |
-
},
|
19 |
-
"2": {
|
20 |
-
"content": "[CLS]",
|
21 |
-
"lstrip": false,
|
22 |
-
"normalized": false,
|
23 |
-
"rstrip": false,
|
24 |
-
"single_word": false,
|
25 |
-
"special": true
|
26 |
-
},
|
27 |
-
"3": {
|
28 |
-
"content": "[SEP]",
|
29 |
-
"lstrip": false,
|
30 |
-
"normalized": false,
|
31 |
-
"rstrip": false,
|
32 |
-
"single_word": false,
|
33 |
-
"special": true
|
34 |
-
},
|
35 |
-
"4": {
|
36 |
-
"content": "[MASK]",
|
37 |
-
"lstrip": false,
|
38 |
-
"normalized": false,
|
39 |
-
"rstrip": false,
|
40 |
-
"single_word": false,
|
41 |
-
"special": true
|
42 |
-
}
|
43 |
-
},
|
44 |
-
"clean_up_tokenization_spaces": true,
|
45 |
-
"cls_token": "[CLS]",
|
46 |
-
"do_basic_tokenize": true,
|
47 |
-
"do_lower_case": true,
|
48 |
-
"mask_token": "[MASK]",
|
49 |
-
"model_max_length": 1000000000000000019884624838656,
|
50 |
-
"never_split": null,
|
51 |
-
"pad_token": "[PAD]",
|
52 |
-
"sep_token": "[SEP]",
|
53 |
-
"strip_accents": null,
|
54 |
-
"tokenize_chinese_chars": true,
|
55 |
-
"tokenizer_class": "BertTokenizer",
|
56 |
-
"unk_token": "[UNK]"
|
57 |
-
}
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 1000000000000000019884624838656,
|
50 |
+
"never_split": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"strip_accents": null,
|
54 |
+
"tokenize_chinese_chars": true,
|
55 |
+
"tokenizer_class": "BertTokenizer",
|
56 |
+
"unk_token": "[UNK]"
|
57 |
+
}
|