AppleTree2017 commited on
Commit
63c612e
·
1 Parent(s): 007a440

NHS-BiomedNLP-BiomedBERT-hypop-512

Browse files
README.md CHANGED
@@ -1,68 +1,68 @@
1
- ---
2
- license: mit
3
- base_model: microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract
4
- tags:
5
- - generated_from_trainer
6
- metrics:
7
- - accuracy
8
- - precision
9
- - recall
10
- - f1
11
- model-index:
12
- - name: NHS-BiomedNLP-BiomedBERT-hypop-512
13
- results: []
14
- ---
15
-
16
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
- should probably proofread and complete it, then remove this comment. -->
18
-
19
- # NHS-BiomedNLP-BiomedBERT-hypop-512
20
-
21
- This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract) on the None dataset.
22
- It achieves the following results on the evaluation set:
23
- - Loss: 0.5390
24
- - Accuracy: 0.8120
25
- - Precision: 0.8119
26
- - Recall: 0.8028
27
- - F1: 0.8059
28
-
29
- ## Model description
30
-
31
- More information needed
32
-
33
- ## Intended uses & limitations
34
-
35
- More information needed
36
-
37
- ## Training and evaluation data
38
-
39
- More information needed
40
-
41
- ## Training procedure
42
-
43
- ### Training hyperparameters
44
-
45
- The following hyperparameters were used during training:
46
- - learning_rate: 3e-05
47
- - train_batch_size: 16
48
- - eval_batch_size: 16
49
- - seed: 42
50
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
- - lr_scheduler_type: linear
52
- - num_epochs: 6
53
-
54
- ### Training results
55
-
56
- | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
57
- |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
58
- | 0.124 | 1.0 | 397 | 0.4029 | 0.8177 | 0.8146 | 0.8129 | 0.8137 |
59
- | 0.0594 | 2.0 | 794 | 0.4561 | 0.8246 | 0.8245 | 0.8161 | 0.8192 |
60
- | 0.1105 | 3.0 | 1191 | 0.5390 | 0.8120 | 0.8119 | 0.8028 | 0.8059 |
61
-
62
-
63
- ### Framework versions
64
-
65
- - Transformers 4.38.2
66
- - Pytorch 2.2.2+cpu
67
- - Datasets 2.18.0
68
- - Tokenizers 0.15.2
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: NHS-BiomedNLP-BiomedBERT-hypop-512
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # NHS-BiomedNLP-BiomedBERT-hypop-512
20
+
21
+ This model is a fine-tuned version of [microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract](https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.3839
24
+ - Accuracy: 0.8269
25
+ - Precision: 0.8228
26
+ - Recall: 0.8237
27
+ - F1: 0.8232
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 16
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 6
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
57
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
58
+ | 0.124 | 1.0 | 397 | 0.4029 | 0.8177 | 0.8146 | 0.8129 | 0.8137 |
59
+ | 0.0594 | 2.0 | 794 | 0.4561 | 0.8246 | 0.8245 | 0.8161 | 0.8192 |
60
+ | 0.1105 | 3.0 | 1191 | 0.5390 | 0.8120 | 0.8119 | 0.8028 | 0.8059 |
61
+
62
+
63
+ ### Framework versions
64
+
65
+ - Transformers 4.38.2
66
+ - Pytorch 2.2.2+cpu
67
+ - Datasets 2.18.0
68
+ - Tokenizers 0.15.2
config.json CHANGED
@@ -1,34 +1,34 @@
1
- {
2
- "_name_or_path": "microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract",
3
- "architectures": [
4
- "BertForSequenceClassification"
5
- ],
6
- "attention_probs_dropout_prob": 0.1,
7
- "classifier_dropout": null,
8
- "hidden_act": "gelu",
9
- "hidden_dropout_prob": 0.1,
10
- "hidden_size": 768,
11
- "id2label": {
12
- "0": "the paper is not a primary experimental study in rare disease or the study is not directly investigating the natural history of a disease",
13
- "1": "its primary contribution centers on observing the time course of a rare disease"
14
- },
15
- "initializer_range": 0.02,
16
- "intermediate_size": 3072,
17
- "label2id": {
18
- "its primary contribution centers on observing the time course of a rare disease": 1,
19
- "the paper is not a primary experimental study in rare disease or the study is not directly investigating the natural history of a disease": 0
20
- },
21
- "layer_norm_eps": 1e-12,
22
- "max_position_embeddings": 512,
23
- "model_type": "bert",
24
- "num_attention_heads": 12,
25
- "num_hidden_layers": 12,
26
- "pad_token_id": 0,
27
- "position_embedding_type": "absolute",
28
- "problem_type": "single_label_classification",
29
- "torch_dtype": "float32",
30
- "transformers_version": "4.38.2",
31
- "type_vocab_size": 2,
32
- "use_cache": true,
33
- "vocab_size": 30522
34
- }
 
1
+ {
2
+ "_name_or_path": "microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "the paper is not a primary experimental study in rare disease or the study is not directly investigating the natural history of a disease",
13
+ "1": "its primary contribution centers on observing the time course of a rare disease"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "its primary contribution centers on observing the time course of a rare disease": 1,
19
+ "the paper is not a primary experimental study in rare disease or the study is not directly investigating the natural history of a disease": 0
20
+ },
21
+ "layer_norm_eps": 1e-12,
22
+ "max_position_embeddings": 512,
23
+ "model_type": "bert",
24
+ "num_attention_heads": 12,
25
+ "num_hidden_layers": 12,
26
+ "pad_token_id": 0,
27
+ "position_embedding_type": "absolute",
28
+ "problem_type": "single_label_classification",
29
+ "torch_dtype": "float32",
30
+ "transformers_version": "4.38.2",
31
+ "type_vocab_size": 2,
32
+ "use_cache": true,
33
+ "vocab_size": 30522
34
+ }
runs/Apr28_15-03-26_NCATS-2265430-P/events.out.tfevents.1714484123.NCATS-2265430-P.5044.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8fc586a12c95ca5d8213c6de60c3e23695bbecfa1bbf23ba9df0030edf47d36e
3
+ size 560
special_tokens_map.json CHANGED
@@ -1,7 +1,7 @@
1
- {
2
- "cls_token": "[CLS]",
3
- "mask_token": "[MASK]",
4
- "pad_token": "[PAD]",
5
- "sep_token": "[SEP]",
6
- "unk_token": "[UNK]"
7
- }
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer_config.json CHANGED
@@ -1,57 +1,57 @@
1
- {
2
- "added_tokens_decoder": {
3
- "0": {
4
- "content": "[PAD]",
5
- "lstrip": false,
6
- "normalized": false,
7
- "rstrip": false,
8
- "single_word": false,
9
- "special": true
10
- },
11
- "1": {
12
- "content": "[UNK]",
13
- "lstrip": false,
14
- "normalized": false,
15
- "rstrip": false,
16
- "single_word": false,
17
- "special": true
18
- },
19
- "2": {
20
- "content": "[CLS]",
21
- "lstrip": false,
22
- "normalized": false,
23
- "rstrip": false,
24
- "single_word": false,
25
- "special": true
26
- },
27
- "3": {
28
- "content": "[SEP]",
29
- "lstrip": false,
30
- "normalized": false,
31
- "rstrip": false,
32
- "single_word": false,
33
- "special": true
34
- },
35
- "4": {
36
- "content": "[MASK]",
37
- "lstrip": false,
38
- "normalized": false,
39
- "rstrip": false,
40
- "single_word": false,
41
- "special": true
42
- }
43
- },
44
- "clean_up_tokenization_spaces": true,
45
- "cls_token": "[CLS]",
46
- "do_basic_tokenize": true,
47
- "do_lower_case": true,
48
- "mask_token": "[MASK]",
49
- "model_max_length": 1000000000000000019884624838656,
50
- "never_split": null,
51
- "pad_token": "[PAD]",
52
- "sep_token": "[SEP]",
53
- "strip_accents": null,
54
- "tokenize_chinese_chars": true,
55
- "tokenizer_class": "BertTokenizer",
56
- "unk_token": "[UNK]"
57
- }
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 1000000000000000019884624838656,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }