Pradeep Kumar
commited on
Upload ISCO_Prediction.py
Browse files- ISCO_Prediction.py +88 -0
ISCO_Prediction.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
Created on Mon Aug 12 11:34:42 2024
|
4 |
+
|
5 |
+
@author: Pradeep Kumar
|
6 |
+
|
7 |
+
"""
|
8 |
+
import numpy as np
|
9 |
+
import tensorflow as tf
|
10 |
+
import tensorflow_hub as hub
|
11 |
+
import tf_keras as keras
|
12 |
+
import pandas as pd
|
13 |
+
from tensorflow.keras.models import load_model
|
14 |
+
from official.nlp.data import classifier_data_lib
|
15 |
+
from official.nlp.tools import tokenization
|
16 |
+
import joblib
|
17 |
+
|
18 |
+
model = load_model('best_model.h5', custom_objects={'KerasLayer': hub.KerasLayer})
|
19 |
+
|
20 |
+
|
21 |
+
vocab_file = model.resolved_object.vocab_file.asset_path.numpy()
|
22 |
+
do_lower_case = model.resolved_object.do_lower_case.numpy()
|
23 |
+
tokenizer = tokenization.FullTokenizer(vocab_file,do_lower_case)
|
24 |
+
|
25 |
+
# Parameters
|
26 |
+
max_seq_length = 128
|
27 |
+
label_list = 424
|
28 |
+
dummy_label = 100
|
29 |
+
|
30 |
+
|
31 |
+
# Define a function to preprocess the new data
|
32 |
+
def get_feature_new(text, max_seq_length, tokenizer, dummy_label):
|
33 |
+
example = classifier_data_lib.InputExample(guid=None,
|
34 |
+
text_a=text.numpy().decode('utf-8'),
|
35 |
+
text_b=None,
|
36 |
+
label=dummy_label) # Use a valid dummy label
|
37 |
+
feature = classifier_data_lib.convert_single_example(0, example, label_list, max_seq_length, tokenizer)
|
38 |
+
return feature.input_ids, feature.input_mask, feature.segment_ids
|
39 |
+
|
40 |
+
def get_feature_map_new(text):
|
41 |
+
input_ids, input_mask, segment_ids = tf.py_function(
|
42 |
+
lambda text: get_feature_new(text, max_seq_length, tokenizer, dummy_label),
|
43 |
+
inp=[text],
|
44 |
+
Tout=[tf.int32, tf.int32, tf.int32]
|
45 |
+
)
|
46 |
+
input_ids.set_shape([max_seq_length])
|
47 |
+
input_mask.set_shape([max_seq_length])
|
48 |
+
segment_ids.set_shape([max_seq_length])
|
49 |
+
|
50 |
+
x = {'input_word_ids': input_ids,
|
51 |
+
'input_mask': input_mask,
|
52 |
+
'input_type_ids': segment_ids}
|
53 |
+
|
54 |
+
return x
|
55 |
+
|
56 |
+
def preprocess_new_data(texts):
|
57 |
+
dataset = tf.data.Dataset.from_tensor_slices((texts,))
|
58 |
+
dataset = dataset.map(get_feature_map_new,
|
59 |
+
num_parallel_calls=tf.data.experimental.AUTOTUNE)
|
60 |
+
dataset = dataset.batch(32, drop_remainder=False)
|
61 |
+
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
|
62 |
+
|
63 |
+
return dataset
|
64 |
+
|
65 |
+
data = pd.read_csv('data.csv')
|
66 |
+
|
67 |
+
|
68 |
+
label_encoder = joblib.load('label_encoder.joblib')
|
69 |
+
|
70 |
+
|
71 |
+
# Preprocess the new data
|
72 |
+
sample_example = data['text'].to_list()
|
73 |
+
new_data_dataset = preprocess_new_data(sample_example)
|
74 |
+
# Make predictions on the new data
|
75 |
+
predictions = model.predict(new_data_dataset)
|
76 |
+
|
77 |
+
# Decode the predictions
|
78 |
+
predicted_classes = [label_list[np.argmax(pred)] for pred in predictions]
|
79 |
+
|
80 |
+
print(predicted_classes)
|
81 |
+
highest_probabilities = [max(instance) for instance in predictions]
|
82 |
+
decoded_labels = label_encoder.inverse_transform(predicted_classes)
|
83 |
+
|
84 |
+
data['prob'] = highest_probabilities
|
85 |
+
data['predicted_isco'] = predicted_classes
|
86 |
+
|
87 |
+
data['target_isco'] =label_encoder.inverse_transform(data.target)
|
88 |
+
data['predicted_isco_decoded'] =label_encoder.inverse_transform(data.predicted_isco)
|