mansoorhamidzadeh commited on
Commit
185c884
·
verified ·
1 Parent(s): de82c53

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +56 -174
README.md CHANGED
@@ -3,201 +3,83 @@ library_name: transformers
3
  license: mit
4
  language:
5
  - fa
6
- metrics:
7
- - bleu
 
 
 
 
 
8
  ---
9
-
10
- # Model Card for Model ID
11
-
12
- <!-- Provide a quick summary of what the model is/does. -->
13
-
14
-
15
 
16
  ## Model Details
17
 
18
- ### Model Description
19
-
20
- <!-- Provide a longer summary of what this model is. -->
21
-
22
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
23
-
24
- - **Developed by:** [More Information Needed]
25
- - **Funded by [optional]:** [More Information Needed]
26
- - **Shared by [optional]:** [More Information Needed]
27
- - **Model type:** [More Information Needed]
28
- - **Language(s) (NLP):** [More Information Needed]
29
- - **License:** [More Information Needed]
30
- - **Finetuned from model [optional]:** [More Information Needed]
31
-
32
- ### Model Sources [optional]
33
-
34
- <!-- Provide the basic links for the model. -->
35
-
36
- - **Repository:** [More Information Needed]
37
- - **Paper [optional]:** [More Information Needed]
38
- - **Demo [optional]:** [More Information Needed]
39
-
40
- ## Uses
41
-
42
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
43
-
44
- ### Direct Use
45
-
46
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
47
-
48
- [More Information Needed]
49
-
50
- ### Downstream Use [optional]
51
-
52
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
53
-
54
- [More Information Needed]
55
-
56
- ### Out-of-Scope Use
57
-
58
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
59
-
60
- [More Information Needed]
61
-
62
- ## Bias, Risks, and Limitations
63
-
64
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
65
-
66
- [More Information Needed]
67
-
68
- ### Recommendations
69
-
70
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
71
-
72
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
73
-
74
- ## How to Get Started with the Model
75
-
76
- Use the code below to get started with the model.
77
-
78
- [More Information Needed]
79
-
80
- ## Training Details
81
-
82
- ### Training Data
83
-
84
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
85
-
86
- [More Information Needed]
87
-
88
- ### Training Procedure
89
-
90
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
91
-
92
- #### Preprocessing [optional]
93
-
94
- [More Information Needed]
95
-
96
-
97
- #### Training Hyperparameters
98
-
99
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
100
-
101
- #### Speeds, Sizes, Times [optional]
102
-
103
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
104
-
105
- [More Information Needed]
106
-
107
- ## Evaluation
108
-
109
- <!-- This section describes the evaluation protocols and provides the results. -->
110
-
111
- ### Testing Data, Factors & Metrics
112
-
113
- #### Testing Data
114
-
115
- <!-- This should link to a Dataset Card if possible. -->
116
-
117
- [More Information Needed]
118
-
119
- #### Factors
120
-
121
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
122
-
123
- [More Information Needed]
124
-
125
- #### Metrics
126
-
127
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
128
-
129
- [More Information Needed]
130
-
131
- ### Results
132
-
133
- [More Information Needed]
134
-
135
- #### Summary
136
-
137
-
138
-
139
- ## Model Examination [optional]
140
-
141
- <!-- Relevant interpretability work for the model goes here -->
142
-
143
- [More Information Needed]
144
-
145
- ## Environmental Impact
146
-
147
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
148
-
149
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
150
-
151
- - **Hardware Type:** [More Information Needed]
152
- - **Hours used:** [More Information Needed]
153
- - **Cloud Provider:** [More Information Needed]
154
- - **Compute Region:** [More Information Needed]
155
- - **Carbon Emitted:** [More Information Needed]
156
-
157
- ## Technical Specifications [optional]
158
-
159
- ### Model Architecture and Objective
160
-
161
- [More Information Needed]
162
-
163
- ### Compute Infrastructure
164
 
165
- [More Information Needed]
 
166
 
167
- #### Hardware
 
 
168
 
169
- [More Information Needed]
170
 
171
- #### Software
 
172
 
173
- [More Information Needed]
 
 
174
 
175
- ## Citation [optional]
176
 
177
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
 
 
 
178
 
179
- **BibTeX:**
 
 
180
 
181
- [More Information Needed]
 
 
 
182
 
183
- **APA:**
 
 
 
184
 
185
- [More Information Needed]
186
 
187
- ## Glossary [optional]
 
188
 
189
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
 
190
 
191
- [More Information Needed]
192
 
193
- ## More Information [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Authors [optional]
 
198
 
199
- [More Information Needed]
200
 
201
- ## Model Card Contact
202
 
203
- [More Information Needed]
 
 
 
 
 
 
 
 
3
  license: mit
4
  language:
5
  - fa
6
+ tags:
7
+ - persian
8
+ - mt5-small
9
+ - mt5
10
+ - persian translation
11
+ - seq2seq
12
+ - farsi
13
  ---
14
+ # Model Card: English to Persian Translation using MT5-Small
 
 
 
 
 
15
 
16
  ## Model Details
17
 
18
+ **Model Description:**
19
+ This model is designed to translate text from English to Persian (Farsi) using the MT5-Small architecture. MT5 is a multilingual variant of the T5 model, pretrained on a diverse set of languages.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
+ **Intended Use:**
22
+ The model is intended for use in applications where automatic translation from English to Persian is required. It can be used for translating documents, web pages, or any other text-based content.
23
 
24
+ **Model Architecture:**
25
+ - **Model Type:** MT5-Small
26
+ - **Language Pair:** English (en) to Persian (fa)
27
 
28
+ ## Training Data
29
 
30
+ **Dataset:**
31
+ The model was trained on a dataset consisting of 100,000 parallel sentences of English and Persian text. The data includes various sources to cover a wide range of topics and ensure diversity.
32
 
33
+ **Data Preprocessing:**
34
+ - Text normalization was performed to ensure consistency.
35
+ - Tokenization was done using the SentencePiece tokenizer.
36
 
37
+ ## Training Procedure
38
 
39
+ **Training Configuration:**
40
+ - **Number of Epochs:** 4
41
+ - **Batch Size:** 8
42
+ - **Learning Rate:** 5e-5
43
+ - **Optimizer:** AdamW
44
 
45
+ **Hardware:**
46
+ - **Training Environment:** NVIDIA P100 GPU
47
+ - **Training Time:** Approximately 4 hours
48
 
49
+ ## How To Use
50
+ ```python
51
+ import torch
52
+ from transformers import pipeline, MT5ForConditionalGeneration, MT5Tokenizer, Text2TextGenerationPipeline
53
 
54
+ # Function to translate using the pipeline
55
+ def translate_with_pipeline(text):
56
+ translator = Text2TextGenerationPipeline(model='NLPclass/mt5_en_fa_translation',tokenizer='NLPclass/mt5_en_fa_translation')
57
+ return translator(text,, max_length=128,num_beams=4)[0]['generated_text']
58
 
 
59
 
60
+ # Example usage
61
+ text = "Hello, how are you?"
62
 
63
+ # Using pipeline
64
+ print("Pipeline Translation:", translate_with_pipeline(text))
65
+ ```
66
 
 
67
 
 
68
 
69
+ ## Ethical Considerations
70
 
71
+ - The model's translations are only as good as the data it was trained on, and biases present in the training data may propagate through the model's outputs.
72
+ - Users should be cautious when using the model for critical tasks, as automatic translations can sometimes be inaccurate or misleading.
73
 
74
+ ## Citation
75
 
76
+ If you use this model in your research or applications, please cite it as follows:
77
 
78
+ ```bibtex
79
+ @misc{your_name_2024_mt5_en_fa,
80
+ author = {NLPclass},
81
+ title = {English to Persian Translation using MT5-Small},
82
+ year = {2024},
83
+ publisher = {Hugging Face},
84
+ howpublished = {\url{https://huggingface.co/NLPclass/mt5_en_fa_translation}},
85
+ }