--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: DBERT_Emotions_tuned results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.925 --- # DBERT_Emotions_tuned This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1828 - Accuracy: 0.925 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.1 | 100 | 0.7513 | 0.7365 | | No log | 0.2 | 200 | 0.3693 | 0.8895 | | No log | 0.3 | 300 | 0.3118 | 0.906 | | No log | 0.4 | 400 | 0.3048 | 0.9055 | | 0.5368 | 0.5 | 500 | 0.2649 | 0.9225 | | 0.5368 | 0.6 | 600 | 0.2192 | 0.9235 | | 0.5368 | 0.7 | 700 | 0.2254 | 0.9245 | | 0.5368 | 0.8 | 800 | 0.2016 | 0.931 | | 0.5368 | 0.9 | 900 | 0.1685 | 0.935 | | 0.2254 | 1.0 | 1000 | 0.1926 | 0.9295 | | 0.2254 | 1.1 | 1100 | 0.2128 | 0.928 | | 0.2254 | 1.2 | 1200 | 0.2008 | 0.9325 | | 0.2254 | 1.3 | 1300 | 0.1662 | 0.9385 | | 0.2254 | 1.4 | 1400 | 0.1945 | 0.939 | | 0.1315 | 1.5 | 1500 | 0.1652 | 0.939 | | 0.1315 | 1.6 | 1600 | 0.1820 | 0.938 | | 0.1315 | 1.7 | 1700 | 0.1660 | 0.938 | | 0.1315 | 1.8 | 1800 | 0.1590 | 0.93 | | 0.1315 | 1.9 | 1900 | 0.1601 | 0.935 | | 0.1295 | 2.0 | 2000 | 0.1645 | 0.9345 | | 0.1295 | 2.1 | 2100 | 0.1845 | 0.9305 | | 0.1295 | 2.2 | 2200 | 0.1784 | 0.9355 | | 0.1295 | 2.3 | 2300 | 0.2042 | 0.9365 | | 0.1295 | 2.4 | 2400 | 0.1852 | 0.9365 | | 0.0891 | 2.5 | 2500 | 0.1797 | 0.94 | | 0.0891 | 2.6 | 2600 | 0.1741 | 0.9365 | | 0.0891 | 2.7 | 2700 | 0.1758 | 0.9385 | | 0.0891 | 2.8 | 2800 | 0.1771 | 0.944 | | 0.0891 | 2.9 | 2900 | 0.1688 | 0.9385 | | 0.0848 | 3.0 | 3000 | 0.1671 | 0.94 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2