Update README.md
Browse files
README.md
CHANGED
@@ -1,832 +0,0 @@
|
|
1 |
-
---
|
2 |
-
library_name: setfit
|
3 |
-
metrics:
|
4 |
-
- accuracy
|
5 |
-
pipeline_tag: text-classification
|
6 |
-
tags:
|
7 |
-
- setfit
|
8 |
-
- sentence-transformers
|
9 |
-
- text-classification
|
10 |
-
- generated_from_setfit_trainer
|
11 |
-
widget:
|
12 |
-
- text: μΈκ³΅μ§λ₯ μ±λ΄ κΈ°μ ν₯μμ λν μμ΄λμ΄κ° μλλ°, κ΄λ ¨λ μμ μμΈν μ λ³΄κ° λ΄κΈ΄ λ
Όλ¬Έμ΄λ λ³΄κ³ μλ₯Ό μ°Ύμμ€λμ?
|
13 |
-
- text: μ°κ΅¬ μλ£μ μλ‘ λΆλΆμ ν μ€λ‘ μμ½ν΄ μ€ μ μλμ?
|
14 |
-
- text: μ°λ¦¬ νμ¬μ HR μ μ±
κ°μ λ°©μμ λν κ³Όμ λ₯Ό μ§ν μ€μ΄μΌ. κ°μ μ£Όμ μ μ΄μ κ³Όμ μ μ΄λ€ λΆλΆμμ μ μ€λ³΅λμλμ§ κΆκΈν΄
|
15 |
-
- text: μ΄μ λ체μ μκ³ μ¨λμ κ΄ν μ°κ΅¬ μλ£λ₯Ό λͺ¨μΌκ³ μμ΄μ. μ¬κΈ°μ κ΄λ ¨λ μ μ¬ν μ°κ΅¬λ λ³΄κ³ μλ₯Ό μΆμ²λ°κ³ μΆμ΄μ
|
16 |
-
- text: 곡μ₯μμ λ°μνλ κ°μ€ λμΆ λ¬Έμ ν΄κ²°μ μν μμ€ν
μ κ°λ°νλ €κ³ νλλ°, μ΄μ κ°μ μΈ‘λ©΄μμ μ§νλ κΈ°μ‘΄ μ°κ΅¬λ λΉμ·ν νλ‘μ νΈκ°
|
17 |
-
μλμ§ μλ €μ£ΌμΈμ
|
18 |
-
inference: true
|
19 |
-
model-index:
|
20 |
-
- name: SetFit
|
21 |
-
results:
|
22 |
-
- task:
|
23 |
-
type: text-classification
|
24 |
-
name: Text Classification
|
25 |
-
dataset:
|
26 |
-
name: Unknown
|
27 |
-
type: unknown
|
28 |
-
split: test
|
29 |
-
metrics:
|
30 |
-
- type: accuracy
|
31 |
-
value: 0.9891304347826086
|
32 |
-
name: Accuracy
|
33 |
-
---
|
34 |
-
|
35 |
-
# SetFit
|
36 |
-
|
37 |
-
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
38 |
-
|
39 |
-
The model has been trained using an efficient few-shot learning technique that involves:
|
40 |
-
|
41 |
-
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
42 |
-
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
43 |
-
|
44 |
-
## Model Details
|
45 |
-
|
46 |
-
### Model Description
|
47 |
-
- **Model Type:** SetFit
|
48 |
-
<!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
|
49 |
-
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
50 |
-
- **Maximum Sequence Length:** 512 tokens
|
51 |
-
- **Number of Classes:** 5 classes
|
52 |
-
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
53 |
-
<!-- - **Language:** Unknown -->
|
54 |
-
<!-- - **License:** Unknown -->
|
55 |
-
|
56 |
-
### Model Sources
|
57 |
-
|
58 |
-
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
59 |
-
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
60 |
-
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
61 |
-
|
62 |
-
### Model Labels
|
63 |
-
| Label | Examples |
|
64 |
-
|:-----------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
65 |
-
| μ€νμ νμ§ | <ul><li>'κ±΄μΆ νλ‘μ νΈ μ€λͺ
λ¬Έμ₯μμ μ€νλ μλͺ»λ λ§μΆ€λ²μ μ°Ύμμ€.'</li><li>'κ²½μ λ³΄κ³ μ λ΄μ©μ λν μ€νμλ₯Ό κ²ν νκ³ μμ ν΄ λ릴 μ μμκΉμ?'</li><li>'κ²½μμ¬ λΆμ νλͺ© λ΄ λ¬Έμ₯ ꡬμ±μ μ€λ₯λ₯Ό μ§μ ν΄μ£Όκ² μ΅λκΉ?'</li></ul> |
|
66 |
-
| μμ½ | <ul><li>'(νΉμ λ
Όλ¬Έ μ λͺ©)μ κ²°λ‘ λ° ν₯ν μ°κ΅¬ λ°©ν₯μ λν΄ μμ μ μ λ¦¬ν΄ μ£ΌμΈμ.'</li><li>'(νΉμ νΉνλ²νΈ)λ₯Ό κΈ°λ°μΌλ‘ ν λ°λͺ
μ μ 체μ μΈ κ°λ
μ μ§§κ² μ€λͺ
λΆνλ립λλ€.'</li><li>'1μ₯μ λ°μ΄ν° μμ§ κΈ°μ μ λν΄ μμ½ν΄μ£ΌμΈμ'</li></ul> |
|
67 |
-
| μ μ¬λ¬Έμ | <ul><li>'5G ν΅μ λͺ¨λ μ΅μ νμ κ΄λ ¨λ νλ‘μ νΈλ₯Ό νκ³ μλλ°, λΉμ·ν λ΄μ©μ νλ‘μ νΈλ λ
Όλ¬Έμ΄ μλμ§ μ°κ²°ν΄μ λ§ν΄μ€λ?'</li><li>'AI κΈ°λ° ν¬μ€μΌμ΄ μ루μ
κ°λ°μ κ΄ν λ¬Έν μ‘°μ¬λ₯Ό νκ³ μμ΅λλ€. μ κ°μ μ£Όμ λ₯Ό λ€λ£¬ λ¬Έμλ₯Ό μ°Ύμμ€ μ μμκΉμ?'</li><li>'AI μ°μ° μλλ₯Ό μ΅μ ννκΈ° μν λ°λ체 μ€κ³ λ°©μμ μ°κ΅¬νκ³ μμ΄. κ΄λ ¨λ μ μ¬ν λ
Όλ¬Έμ΄λ λ³΄κ³ μλ₯Ό μ°Ύκ³ μΆμ΄'</li></ul> |
|
68 |
-
| μ€λ³΅μ± κ²ν | <ul><li>'5G ν΅μ λ§μ κΈ°λ°μΌλ‘ μ€λ§νΈ μν° κ΅¬μΆμ κ΄ν μ°κ΅¬λ₯Ό μμνμ΄. μ΄μ λμΌνκ±°λ κ²ΉμΉλ μ°κ΅¬ κ³Όμ λ νλ‘μ νΈκ° μλμ§ μμλ΄μ£Όκ³ , μ΄μ λ λͺ
ννκ² λ°νμ€'</li><li>'건물μ λ΄μ§ μ€κ³ κ°ν λ°©μμ μ‘°μ¬νκ³ μλλ° μ΄μ μ°κ΄λ κΈ°μ‘΄ νλ‘μ νΈκ° 무μμ΄ μλμ§ κ·Έλ¦¬κ³ μ κ²ΉμΉλμ§ λ§ν΄μ€λ?'</li><li>'κ³ μ±λ₯ λ©λͺ¨λ¦¬ μμμ λ΄κ΅¬μ±μ ν₯μμν€λ κΈ°μ μ κ°λ°νκ³ μμ΄. μ΄μ λΉμ·ν κ³Όμ κ° μ΄μ μ μμλμ§, κ·Έλ¦¬κ³ μ΄λ»κ² μ μ¬νκ±°λ μ€λ³΅λλμ§ λ§ν΄μ€'</li></ul> |
|
69 |
-
| νΉν μ§μμ 보 μ 곡 | <ul><li>'3D κΈμ λ°°μ κΈ°μ (HBM, TSV)μ λμ
μΌλ‘ μΈν μ λ ₯ μλΉ κ°μ λ°©μμλ μ΄λ€ κ²μ΄ μλκ°μ?'</li><li>'AI μν¬λ‘λλ₯Ό μ²λ¦¬νκΈ° μν λ°λ체 μν€ν
μ² μ€κ³μμλ μ΄λ€ μ λ΅λ€μ΄ μ¬μ©λλμ?'</li><li>'LEED μΈμ¦μ κΈ°μ€κ³Ό νλ κ³Όμ μ λν΄ μκ³ μΆμ΅λλ€.'</li></ul> |
|
70 |
-
|
71 |
-
## Evaluation
|
72 |
-
|
73 |
-
### Metrics
|
74 |
-
| Label | Accuracy |
|
75 |
-
|:--------|:---------|
|
76 |
-
| **all** | 0.9891 |
|
77 |
-
|
78 |
-
## Uses
|
79 |
-
|
80 |
-
### Direct Use for Inference
|
81 |
-
|
82 |
-
First install the SetFit library:
|
83 |
-
|
84 |
-
```bash
|
85 |
-
pip install setfit
|
86 |
-
```
|
87 |
-
|
88 |
-
Then you can load this model and run inference.
|
89 |
-
|
90 |
-
```python
|
91 |
-
from setfit import SetFitModel
|
92 |
-
|
93 |
-
# Download from the π€ Hub
|
94 |
-
model = SetFitModel.from_pretrained("NTIS/kepri-embedding")
|
95 |
-
# Run inference
|
96 |
-
preds = model("μ°κ΅¬ μλ£μ μλ‘ λΆλΆμ ν μ€λ‘ μμ½ν΄ μ€ μ μλμ?")
|
97 |
-
```
|
98 |
-
|
99 |
-
<!--
|
100 |
-
### Downstream Use
|
101 |
-
|
102 |
-
*List how someone could finetune this model on their own dataset.*
|
103 |
-
-->
|
104 |
-
|
105 |
-
<!--
|
106 |
-
### Out-of-Scope Use
|
107 |
-
|
108 |
-
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
109 |
-
-->
|
110 |
-
|
111 |
-
<!--
|
112 |
-
## Bias, Risks and Limitations
|
113 |
-
|
114 |
-
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
115 |
-
-->
|
116 |
-
|
117 |
-
<!--
|
118 |
-
### Recommendations
|
119 |
-
|
120 |
-
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
121 |
-
-->
|
122 |
-
|
123 |
-
## Training Details
|
124 |
-
|
125 |
-
### Training Set Metrics
|
126 |
-
| Training set | Min | Median | Max |
|
127 |
-
|:-------------|:----|:--------|:----|
|
128 |
-
| Word count | 6 | 12.4709 | 27 |
|
129 |
-
|
130 |
-
| Label | Training Sample Count |
|
131 |
-
|:-----------|:----------------------|
|
132 |
-
| μμ½ | 105 |
|
133 |
-
| μ€λ³΅μ± κ²ν | 78 |
|
134 |
-
| νΉν μ§μμ 보 μ 곡 | 106 |
|
135 |
-
| μ μ¬λ¬Έμ | 115 |
|
136 |
-
| μ€νμ νμ§ | 95 |
|
137 |
-
|
138 |
-
### Training Hyperparameters
|
139 |
-
- batch_size: (64, 64)
|
140 |
-
- num_epochs: (10, 10)
|
141 |
-
- max_steps: -1
|
142 |
-
- sampling_strategy: oversampling
|
143 |
-
- body_learning_rate: (2e-05, 1e-05)
|
144 |
-
- head_learning_rate: 0.01
|
145 |
-
- loss: CosineSimilarityLoss
|
146 |
-
- distance_metric: cosine_distance
|
147 |
-
- margin: 0.25
|
148 |
-
- end_to_end: False
|
149 |
-
- use_amp: False
|
150 |
-
- warmup_proportion: 0.1
|
151 |
-
- seed: 42
|
152 |
-
- eval_max_steps: -1
|
153 |
-
- load_best_model_at_end: True
|
154 |
-
|
155 |
-
### Training Results
|
156 |
-
| Epoch | Step | Training Loss | Validation Loss |
|
157 |
-
|:-------:|:--------:|:-------------:|:---------------:|
|
158 |
-
| 0.0003 | 1 | 0.2062 | - |
|
159 |
-
| 0.0161 | 50 | 0.2314 | - |
|
160 |
-
| 0.0322 | 100 | 0.2008 | - |
|
161 |
-
| 0.0484 | 150 | 0.1395 | - |
|
162 |
-
| 0.0645 | 200 | 0.11 | - |
|
163 |
-
| 0.0806 | 250 | 0.0872 | - |
|
164 |
-
| 0.0967 | 300 | 0.0462 | - |
|
165 |
-
| 0.1129 | 350 | 0.0188 | - |
|
166 |
-
| 0.1290 | 400 | 0.0201 | - |
|
167 |
-
| 0.1451 | 450 | 0.025 | - |
|
168 |
-
| 0.1612 | 500 | 0.004 | - |
|
169 |
-
| 0.1774 | 550 | 0.002 | - |
|
170 |
-
| 0.1935 | 600 | 0.0153 | - |
|
171 |
-
| 0.2096 | 650 | 0.0011 | - |
|
172 |
-
| 0.2257 | 700 | 0.0007 | - |
|
173 |
-
| 0.2419 | 750 | 0.0006 | - |
|
174 |
-
| 0.2580 | 800 | 0.0006 | - |
|
175 |
-
| 0.2741 | 850 | 0.0005 | - |
|
176 |
-
| 0.2902 | 900 | 0.0004 | - |
|
177 |
-
| 0.3064 | 950 | 0.0005 | - |
|
178 |
-
| 0.3225 | 1000 | 0.0002 | - |
|
179 |
-
| 0.3386 | 1050 | 0.0002 | - |
|
180 |
-
| 0.3547 | 1100 | 0.0003 | - |
|
181 |
-
| 0.3708 | 1150 | 0.0002 | - |
|
182 |
-
| 0.3870 | 1200 | 0.0002 | - |
|
183 |
-
| 0.4031 | 1250 | 0.0002 | - |
|
184 |
-
| 0.4192 | 1300 | 0.0001 | - |
|
185 |
-
| 0.4353 | 1350 | 0.0002 | - |
|
186 |
-
| 0.4515 | 1400 | 0.0001 | - |
|
187 |
-
| 0.4676 | 1450 | 0.0001 | - |
|
188 |
-
| 0.4837 | 1500 | 0.0001 | - |
|
189 |
-
| 0.4998 | 1550 | 0.0001 | - |
|
190 |
-
| 0.5160 | 1600 | 0.0001 | - |
|
191 |
-
| 0.5321 | 1650 | 0.0001 | - |
|
192 |
-
| 0.5482 | 1700 | 0.0001 | - |
|
193 |
-
| 0.5643 | 1750 | 0.0001 | - |
|
194 |
-
| 0.5805 | 1800 | 0.0001 | - |
|
195 |
-
| 0.5966 | 1850 | 0.0001 | - |
|
196 |
-
| 0.6127 | 1900 | 0.0001 | - |
|
197 |
-
| 0.6288 | 1950 | 0.0001 | - |
|
198 |
-
| 0.6450 | 2000 | 0.0001 | - |
|
199 |
-
| 0.6611 | 2050 | 0.0001 | - |
|
200 |
-
| 0.6772 | 2100 | 0.0001 | - |
|
201 |
-
| 0.6933 | 2150 | 0.0001 | - |
|
202 |
-
| 0.7094 | 2200 | 0.0001 | - |
|
203 |
-
| 0.7256 | 2250 | 0.0001 | - |
|
204 |
-
| 0.7417 | 2300 | 0.0001 | - |
|
205 |
-
| 0.7578 | 2350 | 0.0001 | - |
|
206 |
-
| 0.7739 | 2400 | 0.0001 | - |
|
207 |
-
| 0.7901 | 2450 | 0.0001 | - |
|
208 |
-
| 0.8062 | 2500 | 0.0001 | - |
|
209 |
-
| 0.8223 | 2550 | 0.0001 | - |
|
210 |
-
| 0.8384 | 2600 | 0.0 | - |
|
211 |
-
| 0.8546 | 2650 | 0.0 | - |
|
212 |
-
| 0.8707 | 2700 | 0.0 | - |
|
213 |
-
| 0.8868 | 2750 | 0.0001 | - |
|
214 |
-
| 0.9029 | 2800 | 0.0 | - |
|
215 |
-
| 0.9191 | 2850 | 0.0001 | - |
|
216 |
-
| 0.9352 | 2900 | 0.0 | - |
|
217 |
-
| 0.9513 | 2950 | 0.0 | - |
|
218 |
-
| 0.9674 | 3000 | 0.0 | - |
|
219 |
-
| 0.9836 | 3050 | 0.0 | - |
|
220 |
-
| 0.9997 | 3100 | 0.0 | - |
|
221 |
-
| **1.0** | **3101** | **-** | **0.0247** |
|
222 |
-
| 1.0158 | 3150 | 0.0 | - |
|
223 |
-
| 1.0319 | 3200 | 0.0 | - |
|
224 |
-
| 1.0480 | 3250 | 0.0 | - |
|
225 |
-
| 1.0642 | 3300 | 0.0001 | - |
|
226 |
-
| 1.0803 | 3350 | 0.0 | - |
|
227 |
-
| 1.0964 | 3400 | 0.0 | - |
|
228 |
-
| 1.1125 | 3450 | 0.0 | - |
|
229 |
-
| 1.1287 | 3500 | 0.0 | - |
|
230 |
-
| 1.1448 | 3550 | 0.0 | - |
|
231 |
-
| 1.1609 | 3600 | 0.0 | - |
|
232 |
-
| 1.1770 | 3650 | 0.0 | - |
|
233 |
-
| 1.1932 | 3700 | 0.0 | - |
|
234 |
-
| 1.2093 | 3750 | 0.0 | - |
|
235 |
-
| 1.2254 | 3800 | 0.0 | - |
|
236 |
-
| 1.2415 | 3850 | 0.0 | - |
|
237 |
-
| 1.2577 | 3900 | 0.0 | - |
|
238 |
-
| 1.2738 | 3950 | 0.0 | - |
|
239 |
-
| 1.2899 | 4000 | 0.0 | - |
|
240 |
-
| 1.3060 | 4050 | 0.0 | - |
|
241 |
-
| 1.3222 | 4100 | 0.0 | - |
|
242 |
-
| 1.3383 | 4150 | 0.0 | - |
|
243 |
-
| 1.3544 | 4200 | 0.0 | - |
|
244 |
-
| 1.3705 | 4250 | 0.0 | - |
|
245 |
-
| 1.3866 | 4300 | 0.0 | - |
|
246 |
-
| 1.4028 | 4350 | 0.0 | - |
|
247 |
-
| 1.4189 | 4400 | 0.0 | - |
|
248 |
-
| 1.4350 | 4450 | 0.0 | - |
|
249 |
-
| 1.4511 | 4500 | 0.0 | - |
|
250 |
-
| 1.4673 | 4550 | 0.0 | - |
|
251 |
-
| 1.4834 | 4600 | 0.0 | - |
|
252 |
-
| 1.4995 | 4650 | 0.0 | - |
|
253 |
-
| 1.5156 | 4700 | 0.0 | - |
|
254 |
-
| 1.5318 | 4750 | 0.0 | - |
|
255 |
-
| 1.5479 | 4800 | 0.0 | - |
|
256 |
-
| 1.5640 | 4850 | 0.0 | - |
|
257 |
-
| 1.5801 | 4900 | 0.0 | - |
|
258 |
-
| 1.5963 | 4950 | 0.0 | - |
|
259 |
-
| 1.6124 | 5000 | 0.0 | - |
|
260 |
-
| 1.6285 | 5050 | 0.0 | - |
|
261 |
-
| 1.6446 | 5100 | 0.0 | - |
|
262 |
-
| 1.6608 | 5150 | 0.0 | - |
|
263 |
-
| 1.6769 | 5200 | 0.0 | - |
|
264 |
-
| 1.6930 | 5250 | 0.0 | - |
|
265 |
-
| 1.7091 | 5300 | 0.0 | - |
|
266 |
-
| 1.7252 | 5350 | 0.0 | - |
|
267 |
-
| 1.7414 | 5400 | 0.0 | - |
|
268 |
-
| 1.7575 | 5450 | 0.0 | - |
|
269 |
-
| 1.7736 | 5500 | 0.0 | - |
|
270 |
-
| 1.7897 | 5550 | 0.0 | - |
|
271 |
-
| 1.8059 | 5600 | 0.0 | - |
|
272 |
-
| 1.8220 | 5650 | 0.0 | - |
|
273 |
-
| 1.8381 | 5700 | 0.0 | - |
|
274 |
-
| 1.8542 | 5750 | 0.0 | - |
|
275 |
-
| 1.8704 | 5800 | 0.0 | - |
|
276 |
-
| 1.8865 | 5850 | 0.0 | - |
|
277 |
-
| 1.9026 | 5900 | 0.0 | - |
|
278 |
-
| 1.9187 | 5950 | 0.0 | - |
|
279 |
-
| 1.9349 | 6000 | 0.0 | - |
|
280 |
-
| 1.9510 | 6050 | 0.0 | - |
|
281 |
-
| 1.9671 | 6100 | 0.0 | - |
|
282 |
-
| 1.9832 | 6150 | 0.0 | - |
|
283 |
-
| 1.9994 | 6200 | 0.0 | - |
|
284 |
-
| 2.0 | 6202 | - | 0.0262 |
|
285 |
-
| 2.0155 | 6250 | 0.0 | - |
|
286 |
-
| 2.0316 | 6300 | 0.0 | - |
|
287 |
-
| 2.0477 | 6350 | 0.0 | - |
|
288 |
-
| 2.0639 | 6400 | 0.0 | - |
|
289 |
-
| 2.0800 | 6450 | 0.0 | - |
|
290 |
-
| 2.0961 | 6500 | 0.0 | - |
|
291 |
-
| 2.1122 | 6550 | 0.0 | - |
|
292 |
-
| 2.1283 | 6600 | 0.0 | - |
|
293 |
-
| 2.1445 | 6650 | 0.0 | - |
|
294 |
-
| 2.1606 | 6700 | 0.0 | - |
|
295 |
-
| 2.1767 | 6750 | 0.0 | - |
|
296 |
-
| 2.1928 | 6800 | 0.0 | - |
|
297 |
-
| 2.2090 | 6850 | 0.0 | - |
|
298 |
-
| 2.2251 | 6900 | 0.0 | - |
|
299 |
-
| 2.2412 | 6950 | 0.0 | - |
|
300 |
-
| 2.2573 | 7000 | 0.0 | - |
|
301 |
-
| 2.2735 | 7050 | 0.0 | - |
|
302 |
-
| 2.2896 | 7100 | 0.0 | - |
|
303 |
-
| 2.3057 | 7150 | 0.0 | - |
|
304 |
-
| 2.3218 | 7200 | 0.0 | - |
|
305 |
-
| 2.3380 | 7250 | 0.0 | - |
|
306 |
-
| 2.3541 | 7300 | 0.0 | - |
|
307 |
-
| 2.3702 | 7350 | 0.0 | - |
|
308 |
-
| 2.3863 | 7400 | 0.0 | - |
|
309 |
-
| 2.4025 | 7450 | 0.0 | - |
|
310 |
-
| 2.4186 | 7500 | 0.0 | - |
|
311 |
-
| 2.4347 | 7550 | 0.0 | - |
|
312 |
-
| 2.4508 | 7600 | 0.0 | - |
|
313 |
-
| 2.4669 | 7650 | 0.0 | - |
|
314 |
-
| 2.4831 | 7700 | 0.0 | - |
|
315 |
-
| 2.4992 | 7750 | 0.0 | - |
|
316 |
-
| 2.5153 | 7800 | 0.0 | - |
|
317 |
-
| 2.5314 | 7850 | 0.0 | - |
|
318 |
-
| 2.5476 | 7900 | 0.0 | - |
|
319 |
-
| 2.5637 | 7950 | 0.0 | - |
|
320 |
-
| 2.5798 | 8000 | 0.0 | - |
|
321 |
-
| 2.5959 | 8050 | 0.0 | - |
|
322 |
-
| 2.6121 | 8100 | 0.0 | - |
|
323 |
-
| 2.6282 | 8150 | 0.0 | - |
|
324 |
-
| 2.6443 | 8200 | 0.0 | - |
|
325 |
-
| 2.6604 | 8250 | 0.0 | - |
|
326 |
-
| 2.6766 | 8300 | 0.0 | - |
|
327 |
-
| 2.6927 | 8350 | 0.0 | - |
|
328 |
-
| 2.7088 | 8400 | 0.0 | - |
|
329 |
-
| 2.7249 | 8450 | 0.0 | - |
|
330 |
-
| 2.7411 | 8500 | 0.0 | - |
|
331 |
-
| 2.7572 | 8550 | 0.0 | - |
|
332 |
-
| 2.7733 | 8600 | 0.0 | - |
|
333 |
-
| 2.7894 | 8650 | 0.0 | - |
|
334 |
-
| 2.8055 | 8700 | 0.0 | - |
|
335 |
-
| 2.8217 | 8750 | 0.0 | - |
|
336 |
-
| 2.8378 | 8800 | 0.0 | - |
|
337 |
-
| 2.8539 | 8850 | 0.0 | - |
|
338 |
-
| 2.8700 | 8900 | 0.0 | - |
|
339 |
-
| 2.8862 | 8950 | 0.0 | - |
|
340 |
-
| 2.9023 | 9000 | 0.0 | - |
|
341 |
-
| 2.9184 | 9050 | 0.0 | - |
|
342 |
-
| 2.9345 | 9100 | 0.0 | - |
|
343 |
-
| 2.9507 | 9150 | 0.0 | - |
|
344 |
-
| 2.9668 | 9200 | 0.0 | - |
|
345 |
-
| 2.9829 | 9250 | 0.0 | - |
|
346 |
-
| 2.9990 | 9300 | 0.0 | - |
|
347 |
-
| 3.0 | 9303 | - | 0.025 |
|
348 |
-
| 3.0152 | 9350 | 0.0 | - |
|
349 |
-
| 3.0313 | 9400 | 0.0 | - |
|
350 |
-
| 3.0474 | 9450 | 0.0 | - |
|
351 |
-
| 3.0635 | 9500 | 0.0 | - |
|
352 |
-
| 3.0797 | 9550 | 0.0 | - |
|
353 |
-
| 3.0958 | 9600 | 0.0 | - |
|
354 |
-
| 3.1119 | 9650 | 0.0 | - |
|
355 |
-
| 3.1280 | 9700 | 0.0 | - |
|
356 |
-
| 3.1441 | 9750 | 0.0 | - |
|
357 |
-
| 3.1603 | 9800 | 0.0 | - |
|
358 |
-
| 3.1764 | 9850 | 0.0 | - |
|
359 |
-
| 3.1925 | 9900 | 0.0 | - |
|
360 |
-
| 3.2086 | 9950 | 0.0 | - |
|
361 |
-
| 3.2248 | 10000 | 0.0 | - |
|
362 |
-
| 3.2409 | 10050 | 0.0 | - |
|
363 |
-
| 3.2570 | 10100 | 0.0 | - |
|
364 |
-
| 3.2731 | 10150 | 0.0 | - |
|
365 |
-
| 3.2893 | 10200 | 0.0 | - |
|
366 |
-
| 3.3054 | 10250 | 0.0 | - |
|
367 |
-
| 3.3215 | 10300 | 0.0 | - |
|
368 |
-
| 3.3376 | 10350 | 0.0 | - |
|
369 |
-
| 3.3538 | 10400 | 0.0 | - |
|
370 |
-
| 3.3699 | 10450 | 0.0 | - |
|
371 |
-
| 3.3860 | 10500 | 0.0 | - |
|
372 |
-
| 3.4021 | 10550 | 0.0 | - |
|
373 |
-
| 3.4183 | 10600 | 0.0 | - |
|
374 |
-
| 3.4344 | 10650 | 0.0 | - |
|
375 |
-
| 3.4505 | 10700 | 0.0 | - |
|
376 |
-
| 3.4666 | 10750 | 0.0083 | - |
|
377 |
-
| 3.4827 | 10800 | 0.0019 | - |
|
378 |
-
| 3.4989 | 10850 | 0.0001 | - |
|
379 |
-
| 3.5150 | 10900 | 0.0 | - |
|
380 |
-
| 3.5311 | 10950 | 0.001 | - |
|
381 |
-
| 3.5472 | 11000 | 0.0 | - |
|
382 |
-
| 3.5634 | 11050 | 0.0 | - |
|
383 |
-
| 3.5795 | 11100 | 0.0 | - |
|
384 |
-
| 3.5956 | 11150 | 0.0 | - |
|
385 |
-
| 3.6117 | 11200 | 0.0 | - |
|
386 |
-
| 3.6279 | 11250 | 0.0 | - |
|
387 |
-
| 3.6440 | 11300 | 0.0 | - |
|
388 |
-
| 3.6601 | 11350 | 0.0 | - |
|
389 |
-
| 3.6762 | 11400 | 0.0 | - |
|
390 |
-
| 3.6924 | 11450 | 0.0 | - |
|
391 |
-
| 3.7085 | 11500 | 0.0 | - |
|
392 |
-
| 3.7246 | 11550 | 0.0 | - |
|
393 |
-
| 3.7407 | 11600 | 0.0 | - |
|
394 |
-
| 3.7569 | 11650 | 0.0 | - |
|
395 |
-
| 3.7730 | 11700 | 0.0 | - |
|
396 |
-
| 3.7891 | 11750 | 0.0 | - |
|
397 |
-
| 3.8052 | 11800 | 0.0 | - |
|
398 |
-
| 3.8213 | 11850 | 0.0 | - |
|
399 |
-
| 3.8375 | 11900 | 0.0 | - |
|
400 |
-
| 3.8536 | 11950 | 0.0 | - |
|
401 |
-
| 3.8697 | 12000 | 0.0 | - |
|
402 |
-
| 3.8858 | 12050 | 0.0 | - |
|
403 |
-
| 3.9020 | 12100 | 0.0 | - |
|
404 |
-
| 3.9181 | 12150 | 0.0 | - |
|
405 |
-
| 3.9342 | 12200 | 0.0 | - |
|
406 |
-
| 3.9503 | 12250 | 0.0 | - |
|
407 |
-
| 3.9665 | 12300 | 0.0 | - |
|
408 |
-
| 3.9826 | 12350 | 0.0 | - |
|
409 |
-
| 3.9987 | 12400 | 0.0 | - |
|
410 |
-
| 4.0 | 12404 | - | 0.0253 |
|
411 |
-
| 4.0148 | 12450 | 0.0 | - |
|
412 |
-
| 4.0310 | 12500 | 0.0 | - |
|
413 |
-
| 4.0471 | 12550 | 0.0 | - |
|
414 |
-
| 4.0632 | 12600 | 0.0 | - |
|
415 |
-
| 4.0793 | 12650 | 0.0 | - |
|
416 |
-
| 4.0955 | 12700 | 0.0 | - |
|
417 |
-
| 4.1116 | 12750 | 0.0 | - |
|
418 |
-
| 4.1277 | 12800 | 0.0 | - |
|
419 |
-
| 4.1438 | 12850 | 0.0 | - |
|
420 |
-
| 4.1599 | 12900 | 0.0 | - |
|
421 |
-
| 4.1761 | 12950 | 0.0 | - |
|
422 |
-
| 4.1922 | 13000 | 0.0 | - |
|
423 |
-
| 4.2083 | 13050 | 0.0 | - |
|
424 |
-
| 4.2244 | 13100 | 0.0 | - |
|
425 |
-
| 4.2406 | 13150 | 0.0 | - |
|
426 |
-
| 4.2567 | 13200 | 0.0 | - |
|
427 |
-
| 4.2728 | 13250 | 0.0 | - |
|
428 |
-
| 4.2889 | 13300 | 0.0 | - |
|
429 |
-
| 4.3051 | 13350 | 0.0 | - |
|
430 |
-
| 4.3212 | 13400 | 0.0 | - |
|
431 |
-
| 4.3373 | 13450 | 0.0 | - |
|
432 |
-
| 4.3534 | 13500 | 0.0 | - |
|
433 |
-
| 4.3696 | 13550 | 0.0 | - |
|
434 |
-
| 4.3857 | 13600 | 0.0 | - |
|
435 |
-
| 4.4018 | 13650 | 0.0 | - |
|
436 |
-
| 4.4179 | 13700 | 0.0 | - |
|
437 |
-
| 4.4341 | 13750 | 0.0 | - |
|
438 |
-
| 4.4502 | 13800 | 0.0 | - |
|
439 |
-
| 4.4663 | 13850 | 0.0 | - |
|
440 |
-
| 4.4824 | 13900 | 0.0 | - |
|
441 |
-
| 4.4985 | 13950 | 0.0 | - |
|
442 |
-
| 4.5147 | 14000 | 0.0 | - |
|
443 |
-
| 4.5308 | 14050 | 0.0 | - |
|
444 |
-
| 4.5469 | 14100 | 0.0 | - |
|
445 |
-
| 4.5630 | 14150 | 0.0 | - |
|
446 |
-
| 4.5792 | 14200 | 0.0 | - |
|
447 |
-
| 4.5953 | 14250 | 0.0 | - |
|
448 |
-
| 4.6114 | 14300 | 0.0 | - |
|
449 |
-
| 4.6275 | 14350 | 0.0 | - |
|
450 |
-
| 4.6437 | 14400 | 0.0 | - |
|
451 |
-
| 4.6598 | 14450 | 0.0 | - |
|
452 |
-
| 4.6759 | 14500 | 0.0 | - |
|
453 |
-
| 4.6920 | 14550 | 0.0 | - |
|
454 |
-
| 4.7082 | 14600 | 0.0 | - |
|
455 |
-
| 4.7243 | 14650 | 0.0 | - |
|
456 |
-
| 4.7404 | 14700 | 0.0 | - |
|
457 |
-
| 4.7565 | 14750 | 0.0 | - |
|
458 |
-
| 4.7727 | 14800 | 0.0 | - |
|
459 |
-
| 4.7888 | 14850 | 0.0 | - |
|
460 |
-
| 4.8049 | 14900 | 0.0 | - |
|
461 |
-
| 4.8210 | 14950 | 0.0 | - |
|
462 |
-
| 4.8371 | 15000 | 0.0 | - |
|
463 |
-
| 4.8533 | 15050 | 0.0 | - |
|
464 |
-
| 4.8694 | 15100 | 0.0 | - |
|
465 |
-
| 4.8855 | 15150 | 0.0 | - |
|
466 |
-
| 4.9016 | 15200 | 0.0 | - |
|
467 |
-
| 4.9178 | 15250 | 0.0 | - |
|
468 |
-
| 4.9339 | 15300 | 0.0 | - |
|
469 |
-
| 4.9500 | 15350 | 0.0 | - |
|
470 |
-
| 4.9661 | 15400 | 0.0 | - |
|
471 |
-
| 4.9823 | 15450 | 0.0 | - |
|
472 |
-
| 4.9984 | 15500 | 0.0 | - |
|
473 |
-
| 5.0 | 15505 | - | 0.0259 |
|
474 |
-
| 5.0145 | 15550 | 0.0 | - |
|
475 |
-
| 5.0306 | 15600 | 0.0 | - |
|
476 |
-
| 5.0468 | 15650 | 0.0 | - |
|
477 |
-
| 5.0629 | 15700 | 0.0 | - |
|
478 |
-
| 5.0790 | 15750 | 0.0 | - |
|
479 |
-
| 5.0951 | 15800 | 0.0 | - |
|
480 |
-
| 5.1113 | 15850 | 0.0 | - |
|
481 |
-
| 5.1274 | 15900 | 0.0 | - |
|
482 |
-
| 5.1435 | 15950 | 0.0 | - |
|
483 |
-
| 5.1596 | 16000 | 0.0 | - |
|
484 |
-
| 5.1757 | 16050 | 0.0 | - |
|
485 |
-
| 5.1919 | 16100 | 0.0 | - |
|
486 |
-
| 5.2080 | 16150 | 0.0 | - |
|
487 |
-
| 5.2241 | 16200 | 0.0 | - |
|
488 |
-
| 5.2402 | 16250 | 0.0 | - |
|
489 |
-
| 5.2564 | 16300 | 0.0 | - |
|
490 |
-
| 5.2725 | 16350 | 0.0 | - |
|
491 |
-
| 5.2886 | 16400 | 0.0 | - |
|
492 |
-
| 5.3047 | 16450 | 0.0 | - |
|
493 |
-
| 5.3209 | 16500 | 0.0 | - |
|
494 |
-
| 5.3370 | 16550 | 0.0 | - |
|
495 |
-
| 5.3531 | 16600 | 0.0 | - |
|
496 |
-
| 5.3692 | 16650 | 0.0 | - |
|
497 |
-
| 5.3854 | 16700 | 0.0 | - |
|
498 |
-
| 5.4015 | 16750 | 0.0 | - |
|
499 |
-
| 5.4176 | 16800 | 0.0 | - |
|
500 |
-
| 5.4337 | 16850 | 0.0 | - |
|
501 |
-
| 5.4499 | 16900 | 0.0 | - |
|
502 |
-
| 5.4660 | 16950 | 0.0 | - |
|
503 |
-
| 5.4821 | 17000 | 0.0 | - |
|
504 |
-
| 5.4982 | 17050 | 0.0 | - |
|
505 |
-
| 5.5144 | 17100 | 0.0 | - |
|
506 |
-
| 5.5305 | 17150 | 0.0 | - |
|
507 |
-
| 5.5466 | 17200 | 0.0 | - |
|
508 |
-
| 5.5627 | 17250 | 0.0 | - |
|
509 |
-
| 5.5788 | 17300 | 0.0 | - |
|
510 |
-
| 5.5950 | 17350 | 0.0 | - |
|
511 |
-
| 5.6111 | 17400 | 0.0 | - |
|
512 |
-
| 5.6272 | 17450 | 0.0 | - |
|
513 |
-
| 5.6433 | 17500 | 0.0 | - |
|
514 |
-
| 5.6595 | 17550 | 0.0 | - |
|
515 |
-
| 5.6756 | 17600 | 0.0 | - |
|
516 |
-
| 5.6917 | 17650 | 0.0 | - |
|
517 |
-
| 5.7078 | 17700 | 0.0 | - |
|
518 |
-
| 5.7240 | 17750 | 0.0 | - |
|
519 |
-
| 5.7401 | 17800 | 0.0 | - |
|
520 |
-
| 5.7562 | 17850 | 0.0 | - |
|
521 |
-
| 5.7723 | 17900 | 0.0 | - |
|
522 |
-
| 5.7885 | 17950 | 0.0 | - |
|
523 |
-
| 5.8046 | 18000 | 0.0 | - |
|
524 |
-
| 5.8207 | 18050 | 0.0 | - |
|
525 |
-
| 5.8368 | 18100 | 0.0 | - |
|
526 |
-
| 5.8530 | 18150 | 0.0 | - |
|
527 |
-
| 5.8691 | 18200 | 0.0 | - |
|
528 |
-
| 5.8852 | 18250 | 0.0 | - |
|
529 |
-
| 5.9013 | 18300 | 0.0 | - |
|
530 |
-
| 5.9174 | 18350 | 0.0 | - |
|
531 |
-
| 5.9336 | 18400 | 0.0 | - |
|
532 |
-
| 5.9497 | 18450 | 0.0 | - |
|
533 |
-
| 5.9658 | 18500 | 0.0 | - |
|
534 |
-
| 5.9819 | 18550 | 0.0 | - |
|
535 |
-
| 5.9981 | 18600 | 0.0 | - |
|
536 |
-
| 6.0 | 18606 | - | 0.0255 |
|
537 |
-
| 6.0142 | 18650 | 0.0 | - |
|
538 |
-
| 6.0303 | 18700 | 0.0 | - |
|
539 |
-
| 6.0464 | 18750 | 0.0 | - |
|
540 |
-
| 6.0626 | 18800 | 0.0 | - |
|
541 |
-
| 6.0787 | 18850 | 0.0 | - |
|
542 |
-
| 6.0948 | 18900 | 0.0 | - |
|
543 |
-
| 6.1109 | 18950 | 0.0 | - |
|
544 |
-
| 6.1271 | 19000 | 0.0 | - |
|
545 |
-
| 6.1432 | 19050 | 0.0 | - |
|
546 |
-
| 6.1593 | 19100 | 0.0 | - |
|
547 |
-
| 6.1754 | 19150 | 0.0 | - |
|
548 |
-
| 6.1916 | 19200 | 0.0 | - |
|
549 |
-
| 6.2077 | 19250 | 0.0 | - |
|
550 |
-
| 6.2238 | 19300 | 0.0 | - |
|
551 |
-
| 6.2399 | 19350 | 0.0 | - |
|
552 |
-
| 6.2560 | 19400 | 0.0 | - |
|
553 |
-
| 6.2722 | 19450 | 0.0 | - |
|
554 |
-
| 6.2883 | 19500 | 0.0 | - |
|
555 |
-
| 6.3044 | 19550 | 0.0 | - |
|
556 |
-
| 6.3205 | 19600 | 0.0 | - |
|
557 |
-
| 6.3367 | 19650 | 0.0 | - |
|
558 |
-
| 6.3528 | 19700 | 0.0 | - |
|
559 |
-
| 6.3689 | 19750 | 0.0 | - |
|
560 |
-
| 6.3850 | 19800 | 0.0 | - |
|
561 |
-
| 6.4012 | 19850 | 0.0 | - |
|
562 |
-
| 6.4173 | 19900 | 0.0 | - |
|
563 |
-
| 6.4334 | 19950 | 0.0 | - |
|
564 |
-
| 6.4495 | 20000 | 0.0 | - |
|
565 |
-
| 6.4657 | 20050 | 0.0 | - |
|
566 |
-
| 6.4818 | 20100 | 0.0 | - |
|
567 |
-
| 6.4979 | 20150 | 0.0 | - |
|
568 |
-
| 6.5140 | 20200 | 0.0 | - |
|
569 |
-
| 6.5302 | 20250 | 0.0 | - |
|
570 |
-
| 6.5463 | 20300 | 0.0 | - |
|
571 |
-
| 6.5624 | 20350 | 0.0 | - |
|
572 |
-
| 6.5785 | 20400 | 0.0 | - |
|
573 |
-
| 6.5946 | 20450 | 0.0 | - |
|
574 |
-
| 6.6108 | 20500 | 0.0 | - |
|
575 |
-
| 6.6269 | 20550 | 0.0 | - |
|
576 |
-
| 6.6430 | 20600 | 0.0 | - |
|
577 |
-
| 6.6591 | 20650 | 0.0 | - |
|
578 |
-
| 6.6753 | 20700 | 0.0 | - |
|
579 |
-
| 6.6914 | 20750 | 0.0 | - |
|
580 |
-
| 6.7075 | 20800 | 0.0 | - |
|
581 |
-
| 6.7236 | 20850 | 0.0 | - |
|
582 |
-
| 6.7398 | 20900 | 0.0 | - |
|
583 |
-
| 6.7559 | 20950 | 0.0 | - |
|
584 |
-
| 6.7720 | 21000 | 0.0 | - |
|
585 |
-
| 6.7881 | 21050 | 0.0 | - |
|
586 |
-
| 6.8043 | 21100 | 0.0 | - |
|
587 |
-
| 6.8204 | 21150 | 0.0 | - |
|
588 |
-
| 6.8365 | 21200 | 0.0 | - |
|
589 |
-
| 6.8526 | 21250 | 0.0 | - |
|
590 |
-
| 6.8688 | 21300 | 0.0 | - |
|
591 |
-
| 6.8849 | 21350 | 0.0 | - |
|
592 |
-
| 6.9010 | 21400 | 0.0 | - |
|
593 |
-
| 6.9171 | 21450 | 0.0 | - |
|
594 |
-
| 6.9332 | 21500 | 0.0 | - |
|
595 |
-
| 6.9494 | 21550 | 0.0 | - |
|
596 |
-
| 6.9655 | 21600 | 0.0 | - |
|
597 |
-
| 6.9816 | 21650 | 0.0 | - |
|
598 |
-
| 6.9977 | 21700 | 0.0 | - |
|
599 |
-
| 7.0 | 21707 | - | 0.0264 |
|
600 |
-
| 7.0139 | 21750 | 0.0 | - |
|
601 |
-
| 7.0300 | 21800 | 0.0 | - |
|
602 |
-
| 7.0461 | 21850 | 0.0 | - |
|
603 |
-
| 7.0622 | 21900 | 0.0 | - |
|
604 |
-
| 7.0784 | 21950 | 0.0 | - |
|
605 |
-
| 7.0945 | 22000 | 0.0 | - |
|
606 |
-
| 7.1106 | 22050 | 0.0 | - |
|
607 |
-
| 7.1267 | 22100 | 0.0 | - |
|
608 |
-
| 7.1429 | 22150 | 0.0 | - |
|
609 |
-
| 7.1590 | 22200 | 0.0 | - |
|
610 |
-
| 7.1751 | 22250 | 0.0 | - |
|
611 |
-
| 7.1912 | 22300 | 0.0 | - |
|
612 |
-
| 7.2074 | 22350 | 0.0 | - |
|
613 |
-
| 7.2235 | 22400 | 0.0 | - |
|
614 |
-
| 7.2396 | 22450 | 0.0 | - |
|
615 |
-
| 7.2557 | 22500 | 0.0 | - |
|
616 |
-
| 7.2718 | 22550 | 0.0 | - |
|
617 |
-
| 7.2880 | 22600 | 0.0 | - |
|
618 |
-
| 7.3041 | 22650 | 0.0 | - |
|
619 |
-
| 7.3202 | 22700 | 0.0 | - |
|
620 |
-
| 7.3363 | 22750 | 0.0 | - |
|
621 |
-
| 7.3525 | 22800 | 0.0 | - |
|
622 |
-
| 7.3686 | 22850 | 0.0 | - |
|
623 |
-
| 7.3847 | 22900 | 0.0 | - |
|
624 |
-
| 7.4008 | 22950 | 0.0 | - |
|
625 |
-
| 7.4170 | 23000 | 0.0 | - |
|
626 |
-
| 7.4331 | 23050 | 0.0 | - |
|
627 |
-
| 7.4492 | 23100 | 0.0 | - |
|
628 |
-
| 7.4653 | 23150 | 0.0 | - |
|
629 |
-
| 7.4815 | 23200 | 0.0 | - |
|
630 |
-
| 7.4976 | 23250 | 0.0 | - |
|
631 |
-
| 7.5137 | 23300 | 0.0 | - |
|
632 |
-
| 7.5298 | 23350 | 0.0 | - |
|
633 |
-
| 7.5460 | 23400 | 0.0 | - |
|
634 |
-
| 7.5621 | 23450 | 0.0 | - |
|
635 |
-
| 7.5782 | 23500 | 0.0 | - |
|
636 |
-
| 7.5943 | 23550 | 0.0 | - |
|
637 |
-
| 7.6104 | 23600 | 0.0 | - |
|
638 |
-
| 7.6266 | 23650 | 0.0 | - |
|
639 |
-
| 7.6427 | 23700 | 0.0 | - |
|
640 |
-
| 7.6588 | 23750 | 0.0 | - |
|
641 |
-
| 7.6749 | 23800 | 0.0 | - |
|
642 |
-
| 7.6911 | 23850 | 0.0 | - |
|
643 |
-
| 7.7072 | 23900 | 0.0 | - |
|
644 |
-
| 7.7233 | 23950 | 0.0 | - |
|
645 |
-
| 7.7394 | 24000 | 0.0 | - |
|
646 |
-
| 7.7556 | 24050 | 0.0 | - |
|
647 |
-
| 7.7717 | 24100 | 0.0 | - |
|
648 |
-
| 7.7878 | 24150 | 0.0 | - |
|
649 |
-
| 7.8039 | 24200 | 0.0 | - |
|
650 |
-
| 7.8201 | 24250 | 0.0 | - |
|
651 |
-
| 7.8362 | 24300 | 0.0 | - |
|
652 |
-
| 7.8523 | 24350 | 0.0 | - |
|
653 |
-
| 7.8684 | 24400 | 0.0 | - |
|
654 |
-
| 7.8846 | 24450 | 0.0 | - |
|
655 |
-
| 7.9007 | 24500 | 0.0 | - |
|
656 |
-
| 7.9168 | 24550 | 0.0 | - |
|
657 |
-
| 7.9329 | 24600 | 0.0 | - |
|
658 |
-
| 7.9490 | 24650 | 0.0 | - |
|
659 |
-
| 7.9652 | 24700 | 0.0 | - |
|
660 |
-
| 7.9813 | 24750 | 0.0 | - |
|
661 |
-
| 7.9974 | 24800 | 0.0 | - |
|
662 |
-
| 8.0 | 24808 | - | 0.0252 |
|
663 |
-
| 8.0135 | 24850 | 0.0 | - |
|
664 |
-
| 8.0297 | 24900 | 0.0 | - |
|
665 |
-
| 8.0458 | 24950 | 0.0 | - |
|
666 |
-
| 8.0619 | 25000 | 0.0 | - |
|
667 |
-
| 8.0780 | 25050 | 0.0 | - |
|
668 |
-
| 8.0942 | 25100 | 0.0 | - |
|
669 |
-
| 8.1103 | 25150 | 0.0 | - |
|
670 |
-
| 8.1264 | 25200 | 0.0 | - |
|
671 |
-
| 8.1425 | 25250 | 0.0 | - |
|
672 |
-
| 8.1587 | 25300 | 0.0 | - |
|
673 |
-
| 8.1748 | 25350 | 0.0 | - |
|
674 |
-
| 8.1909 | 25400 | 0.0 | - |
|
675 |
-
| 8.2070 | 25450 | 0.0 | - |
|
676 |
-
| 8.2232 | 25500 | 0.0 | - |
|
677 |
-
| 8.2393 | 25550 | 0.0 | - |
|
678 |
-
| 8.2554 | 25600 | 0.0 | - |
|
679 |
-
| 8.2715 | 25650 | 0.0 | - |
|
680 |
-
| 8.2876 | 25700 | 0.0 | - |
|
681 |
-
| 8.3038 | 25750 | 0.0 | - |
|
682 |
-
| 8.3199 | 25800 | 0.0 | - |
|
683 |
-
| 8.3360 | 25850 | 0.0 | - |
|
684 |
-
| 8.3521 | 25900 | 0.0 | - |
|
685 |
-
| 8.3683 | 25950 | 0.0 | - |
|
686 |
-
| 8.3844 | 26000 | 0.0 | - |
|
687 |
-
| 8.4005 | 26050 | 0.0 | - |
|
688 |
-
| 8.4166 | 26100 | 0.0 | - |
|
689 |
-
| 8.4328 | 26150 | 0.0 | - |
|
690 |
-
| 8.4489 | 26200 | 0.0 | - |
|
691 |
-
| 8.4650 | 26250 | 0.0 | - |
|
692 |
-
| 8.4811 | 26300 | 0.0 | - |
|
693 |
-
| 8.4973 | 26350 | 0.0 | - |
|
694 |
-
| 8.5134 | 26400 | 0.0 | - |
|
695 |
-
| 8.5295 | 26450 | 0.0 | - |
|
696 |
-
| 8.5456 | 26500 | 0.0 | - |
|
697 |
-
| 8.5618 | 26550 | 0.0 | - |
|
698 |
-
| 8.5779 | 26600 | 0.0 | - |
|
699 |
-
| 8.5940 | 26650 | 0.0 | - |
|
700 |
-
| 8.6101 | 26700 | 0.0 | - |
|
701 |
-
| 8.6262 | 26750 | 0.0 | - |
|
702 |
-
| 8.6424 | 26800 | 0.0 | - |
|
703 |
-
| 8.6585 | 26850 | 0.0 | - |
|
704 |
-
| 8.6746 | 26900 | 0.0 | - |
|
705 |
-
| 8.6907 | 26950 | 0.0 | - |
|
706 |
-
| 8.7069 | 27000 | 0.0 | - |
|
707 |
-
| 8.7230 | 27050 | 0.0 | - |
|
708 |
-
| 8.7391 | 27100 | 0.0 | - |
|
709 |
-
| 8.7552 | 27150 | 0.0 | - |
|
710 |
-
| 8.7714 | 27200 | 0.0 | - |
|
711 |
-
| 8.7875 | 27250 | 0.0 | - |
|
712 |
-
| 8.8036 | 27300 | 0.0 | - |
|
713 |
-
| 8.8197 | 27350 | 0.0 | - |
|
714 |
-
| 8.8359 | 27400 | 0.0 | - |
|
715 |
-
| 8.8520 | 27450 | 0.0 | - |
|
716 |
-
| 8.8681 | 27500 | 0.0 | - |
|
717 |
-
| 8.8842 | 27550 | 0.0 | - |
|
718 |
-
| 8.9004 | 27600 | 0.0 | - |
|
719 |
-
| 8.9165 | 27650 | 0.0 | - |
|
720 |
-
| 8.9326 | 27700 | 0.0 | - |
|
721 |
-
| 8.9487 | 27750 | 0.0 | - |
|
722 |
-
| 8.9649 | 27800 | 0.0 | - |
|
723 |
-
| 8.9810 | 27850 | 0.0 | - |
|
724 |
-
| 8.9971 | 27900 | 0.0 | - |
|
725 |
-
| 9.0 | 27909 | - | 0.0255 |
|
726 |
-
| 9.0132 | 27950 | 0.0 | - |
|
727 |
-
| 9.0293 | 28000 | 0.0 | - |
|
728 |
-
| 9.0455 | 28050 | 0.0 | - |
|
729 |
-
| 9.0616 | 28100 | 0.0 | - |
|
730 |
-
| 9.0777 | 28150 | 0.0 | - |
|
731 |
-
| 9.0938 | 28200 | 0.0 | - |
|
732 |
-
| 9.1100 | 28250 | 0.0 | - |
|
733 |
-
| 9.1261 | 28300 | 0.0 | - |
|
734 |
-
| 9.1422 | 28350 | 0.0 | - |
|
735 |
-
| 9.1583 | 28400 | 0.0 | - |
|
736 |
-
| 9.1745 | 28450 | 0.0 | - |
|
737 |
-
| 9.1906 | 28500 | 0.0 | - |
|
738 |
-
| 9.2067 | 28550 | 0.0 | - |
|
739 |
-
| 9.2228 | 28600 | 0.0 | - |
|
740 |
-
| 9.2390 | 28650 | 0.0 | - |
|
741 |
-
| 9.2551 | 28700 | 0.0 | - |
|
742 |
-
| 9.2712 | 28750 | 0.0 | - |
|
743 |
-
| 9.2873 | 28800 | 0.0 | - |
|
744 |
-
| 9.3035 | 28850 | 0.0 | - |
|
745 |
-
| 9.3196 | 28900 | 0.0 | - |
|
746 |
-
| 9.3357 | 28950 | 0.0 | - |
|
747 |
-
| 9.3518 | 29000 | 0.0 | - |
|
748 |
-
| 9.3679 | 29050 | 0.0 | - |
|
749 |
-
| 9.3841 | 29100 | 0.0 | - |
|
750 |
-
| 9.4002 | 29150 | 0.0 | - |
|
751 |
-
| 9.4163 | 29200 | 0.0 | - |
|
752 |
-
| 9.4324 | 29250 | 0.0 | - |
|
753 |
-
| 9.4486 | 29300 | 0.0 | - |
|
754 |
-
| 9.4647 | 29350 | 0.0 | - |
|
755 |
-
| 9.4808 | 29400 | 0.0 | - |
|
756 |
-
| 9.4969 | 29450 | 0.0 | - |
|
757 |
-
| 9.5131 | 29500 | 0.0 | - |
|
758 |
-
| 9.5292 | 29550 | 0.0 | - |
|
759 |
-
| 9.5453 | 29600 | 0.0 | - |
|
760 |
-
| 9.5614 | 29650 | 0.0 | - |
|
761 |
-
| 9.5776 | 29700 | 0.0 | - |
|
762 |
-
| 9.5937 | 29750 | 0.0 | - |
|
763 |
-
| 9.6098 | 29800 | 0.0 | - |
|
764 |
-
| 9.6259 | 29850 | 0.0 | - |
|
765 |
-
| 9.6421 | 29900 | 0.0 | - |
|
766 |
-
| 9.6582 | 29950 | 0.0 | - |
|
767 |
-
| 9.6743 | 30000 | 0.0 | - |
|
768 |
-
| 9.6904 | 30050 | 0.0 | - |
|
769 |
-
| 9.7065 | 30100 | 0.0 | - |
|
770 |
-
| 9.7227 | 30150 | 0.0 | - |
|
771 |
-
| 9.7388 | 30200 | 0.0 | - |
|
772 |
-
| 9.7549 | 30250 | 0.0 | - |
|
773 |
-
| 9.7710 | 30300 | 0.0 | - |
|
774 |
-
| 9.7872 | 30350 | 0.0 | - |
|
775 |
-
| 9.8033 | 30400 | 0.0 | - |
|
776 |
-
| 9.8194 | 30450 | 0.0 | - |
|
777 |
-
| 9.8355 | 30500 | 0.0 | - |
|
778 |
-
| 9.8517 | 30550 | 0.0 | - |
|
779 |
-
| 9.8678 | 30600 | 0.0 | - |
|
780 |
-
| 9.8839 | 30650 | 0.0 | - |
|
781 |
-
| 9.9000 | 30700 | 0.0 | - |
|
782 |
-
| 9.9162 | 30750 | 0.0 | - |
|
783 |
-
| 9.9323 | 30800 | 0.0 | - |
|
784 |
-
| 9.9484 | 30850 | 0.0 | - |
|
785 |
-
| 9.9645 | 30900 | 0.0 | - |
|
786 |
-
| 9.9807 | 30950 | 0.0 | - |
|
787 |
-
| 9.9968 | 31000 | 0.0 | - |
|
788 |
-
| 10.0 | 31010 | - | 0.0264 |
|
789 |
-
|
790 |
-
* The bold row denotes the saved checkpoint.
|
791 |
-
### Framework Versions
|
792 |
-
- Python: 3.9.18
|
793 |
-
- SetFit: 1.0.3
|
794 |
-
- Sentence Transformers: 2.2.1
|
795 |
-
- Transformers: 4.32.1
|
796 |
-
- PyTorch: 1.10.0
|
797 |
-
- Datasets: 2.20.0
|
798 |
-
- Tokenizers: 0.13.3
|
799 |
-
|
800 |
-
## Citation
|
801 |
-
|
802 |
-
### BibTeX
|
803 |
-
```bibtex
|
804 |
-
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
805 |
-
doi = {10.48550/ARXIV.2209.11055},
|
806 |
-
url = {https://arxiv.org/abs/2209.11055},
|
807 |
-
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
808 |
-
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
809 |
-
title = {Efficient Few-Shot Learning Without Prompts},
|
810 |
-
publisher = {arXiv},
|
811 |
-
year = {2022},
|
812 |
-
copyright = {Creative Commons Attribution 4.0 International}
|
813 |
-
}
|
814 |
-
```
|
815 |
-
|
816 |
-
<!--
|
817 |
-
## Glossary
|
818 |
-
|
819 |
-
*Clearly define terms in order to be accessible across audiences.*
|
820 |
-
-->
|
821 |
-
|
822 |
-
<!--
|
823 |
-
## Model Card Authors
|
824 |
-
|
825 |
-
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
826 |
-
-->
|
827 |
-
|
828 |
-
<!--
|
829 |
-
## Model Card Contact
|
830 |
-
|
831 |
-
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
832 |
-
-->
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|