Add SetFit model
Browse files- 1_Pooling/config.json +7 -0
- README.md +464 -3
- config.json +29 -0
- config_sentence_transformers.json +7 -0
- config_setfit.json +7 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +9 -0
- tokenizer.json +0 -0
- tokenizer_config.json +24 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
CHANGED
@@ -1,3 +1,464 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: jhgan/ko-sroberta-multitask
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- sentence-transformers
|
10 |
+
- text-classification
|
11 |
+
- generated_from_setfit_trainer
|
12 |
+
widget:
|
13 |
+
- text: 기업이 파산 신청을 할 때 채무자의 주된 책임 범위는 어떠한가요?
|
14 |
+
- text: 무선 전력 전송 기술을 이용한 스마트 가전기기를 설계 중이야. 이와 동일한 연구나 특허가 있는지 알아봐줘
|
15 |
+
- text: 회사 합병 시 소액주주의 권리 보호 방안은 어떤 방식으로 이루어지나요?
|
16 |
+
- text: 화재 예방 시스템 설계에 대한 연구를 수행하고 있어. 기존 연구에서 이와 관련된 유사한 시스템 설계도나 논문이 있는지 찾고 싶어
|
17 |
+
- text: 블랙홀 정보 역설에 대해 설명한 논문의 핵심 포인트를 짧게 집약해 줄래?
|
18 |
+
inference: true
|
19 |
+
model-index:
|
20 |
+
- name: SetFit with jhgan/ko-sroberta-multitask
|
21 |
+
results:
|
22 |
+
- task:
|
23 |
+
type: text-classification
|
24 |
+
name: Text Classification
|
25 |
+
dataset:
|
26 |
+
name: Unknown
|
27 |
+
type: unknown
|
28 |
+
split: test
|
29 |
+
metrics:
|
30 |
+
- type: accuracy
|
31 |
+
value: 0.9558823529411765
|
32 |
+
name: Accuracy
|
33 |
+
---
|
34 |
+
|
35 |
+
# SetFit with jhgan/ko-sroberta-multitask
|
36 |
+
|
37 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [jhgan/ko-sroberta-multitask](https://huggingface.co/jhgan/ko-sroberta-multitask) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
38 |
+
|
39 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
40 |
+
|
41 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
42 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
43 |
+
|
44 |
+
## Model Details
|
45 |
+
|
46 |
+
### Model Description
|
47 |
+
- **Model Type:** SetFit
|
48 |
+
- **Sentence Transformer body:** [jhgan/ko-sroberta-multitask](https://huggingface.co/jhgan/ko-sroberta-multitask)
|
49 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
50 |
+
- **Maximum Sequence Length:** 128 tokens
|
51 |
+
- **Number of Classes:** 5 classes
|
52 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
53 |
+
<!-- - **Language:** Unknown -->
|
54 |
+
<!-- - **License:** Unknown -->
|
55 |
+
|
56 |
+
### Model Sources
|
57 |
+
|
58 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
59 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
60 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
61 |
+
|
62 |
+
### Model Labels
|
63 |
+
| Label | Examples |
|
64 |
+
|:-----------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
65 |
+
| 오탈자 탐지 | <ul><li>'경영 보고서 내용에 대한 오탈자를 검토하고 수정해 드릴 수 있을까요?'</li><li>'경영 보고서에 포함된 오탈자를 잡아 줄 수 있나요?'</li><li>'경쟁사 분석 항목 내 문장 구성의 오류를 지적해주겠습니까?'</li></ul> |
|
66 |
+
| 요약 | <ul><li>'(특정 특허번호)를 기반으로 한 발명의 전체적인 개념을 짧게 설명 부탁드립니다.'</li><li>'1장의 데이터 수집 기술에 대해 요약해주세요'</li><li>'2022년 경제 성장 동향에 관한 문서의 두 번째 챕터를 축약해 주세요.'</li></ul> |
|
67 |
+
| 유사문서 | <ul><li>'5G 통신 모듈 최적화에 관련된 프로젝트를 하고 있는데, 비슷한 내용의 프로젝트나 논문이 있는지 연결해서 말해줄래?'</li><li>'5nm 공정을 이용한 반도체 제조 방법에 대해 작성하고 있어. 이와 연관 있는 보고서나 논문이 있으면 찾아주세요'</li><li>'AI 기반 헬스케어 솔루션 개발에 관한 문헌 조사를 하고 있습니다. 와 같은 주제를 다룬 문서를 찾아줄 수 있을까요?'</li></ul> |
|
68 |
+
| 중복성 검토 | <ul><li>'5G 네트워크 최적화 기술을 연구 중입니다. 기존 연구와 어떤 부분이 중복되는지, 중복의 이유를 명확히 설명해줄 수 있나요?'</li><li>'감정 노동자의 복지 증진 방안을 찾고 있어요. 이와 동일한 주제로 진행된 다른 프로젝트가 있었는지 알려주실래요? 그리고 그 이유도 설명해주세요.'</li><li>'건물의 내진 설계 강화 방안을 조사하고 있는데 이에 연관된 기존 프로젝트가 무엇이 있는지 그리고 왜 겹치는지 말해줄래?'</li></ul> |
|
69 |
+
| 특화 지식정보 제공 | <ul><li>'3D 금속 배선 기술(HBM, TSV)의 도입으로 인한 전력 소비 감소 방안에는 어떤 것이 있는가요?'</li><li>'AI 워크로드를 처리하기 위한 반도체 아키텍처 설계에서는 어떤 전략들이 사용되나요?'</li><li>'B2B 마케팅에서 특히 효과적인 콘텐츠 형식이나 채널은 어떤 것이 많아요?'</li></ul> |
|
70 |
+
|
71 |
+
## Evaluation
|
72 |
+
|
73 |
+
### Metrics
|
74 |
+
| Label | Accuracy |
|
75 |
+
|:--------|:---------|
|
76 |
+
| **all** | 0.9559 |
|
77 |
+
|
78 |
+
## Uses
|
79 |
+
|
80 |
+
### Direct Use for Inference
|
81 |
+
|
82 |
+
First install the SetFit library:
|
83 |
+
|
84 |
+
```bash
|
85 |
+
pip install setfit
|
86 |
+
```
|
87 |
+
|
88 |
+
Then you can load this model and run inference.
|
89 |
+
|
90 |
+
```python
|
91 |
+
from setfit import SetFitModel
|
92 |
+
|
93 |
+
# Download from the 🤗 Hub
|
94 |
+
model = SetFitModel.from_pretrained("NTIS/kepri-embedding")
|
95 |
+
# Run inference
|
96 |
+
preds = model("기업이 파산 신청을 할 때 채무자의 주된 책임 범위는 어떠한가요?")
|
97 |
+
```
|
98 |
+
|
99 |
+
<!--
|
100 |
+
### Downstream Use
|
101 |
+
|
102 |
+
*List how someone could finetune this model on their own dataset.*
|
103 |
+
-->
|
104 |
+
|
105 |
+
<!--
|
106 |
+
### Out-of-Scope Use
|
107 |
+
|
108 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
109 |
+
-->
|
110 |
+
|
111 |
+
<!--
|
112 |
+
## Bias, Risks and Limitations
|
113 |
+
|
114 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
115 |
+
-->
|
116 |
+
|
117 |
+
<!--
|
118 |
+
### Recommendations
|
119 |
+
|
120 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
121 |
+
-->
|
122 |
+
|
123 |
+
## Training Details
|
124 |
+
|
125 |
+
### Training Set Metrics
|
126 |
+
| Training set | Min | Median | Max |
|
127 |
+
|:-------------|:----|:--------|:----|
|
128 |
+
| Word count | 6 | 12.4219 | 27 |
|
129 |
+
|
130 |
+
| Label | Training Sample Count |
|
131 |
+
|:--------|:----------------------|
|
132 |
+
| rag | 0 |
|
133 |
+
| general | 0 |
|
134 |
+
|
135 |
+
### Training Hyperparameters
|
136 |
+
- batch_size: (64, 64)
|
137 |
+
- num_epochs: (4, 4)
|
138 |
+
- max_steps: -1
|
139 |
+
- sampling_strategy: oversampling
|
140 |
+
- body_learning_rate: (2e-05, 1e-05)
|
141 |
+
- head_learning_rate: 0.01
|
142 |
+
- loss: CosineSimilarityLoss
|
143 |
+
- distance_metric: cosine_distance
|
144 |
+
- margin: 0.25
|
145 |
+
- end_to_end: False
|
146 |
+
- use_amp: False
|
147 |
+
- warmup_proportion: 0.1
|
148 |
+
- seed: 42
|
149 |
+
- eval_max_steps: -1
|
150 |
+
- load_best_model_at_end: True
|
151 |
+
|
152 |
+
### Training Results
|
153 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
154 |
+
|:-------:|:---------:|:-------------:|:---------------:|
|
155 |
+
| 0.0003 | 1 | 0.1889 | - |
|
156 |
+
| 0.0153 | 50 | 0.1818 | - |
|
157 |
+
| 0.0306 | 100 | 0.1421 | - |
|
158 |
+
| 0.0459 | 150 | 0.0582 | - |
|
159 |
+
| 0.0612 | 200 | 0.0299 | - |
|
160 |
+
| 0.0765 | 250 | 0.0093 | - |
|
161 |
+
| 0.0918 | 300 | 0.0036 | - |
|
162 |
+
| 0.1071 | 350 | 0.001 | - |
|
163 |
+
| 0.1224 | 400 | 0.0012 | - |
|
164 |
+
| 0.1377 | 450 | 0.0006 | - |
|
165 |
+
| 0.1530 | 500 | 0.0006 | - |
|
166 |
+
| 0.1683 | 550 | 0.0003 | - |
|
167 |
+
| 0.1836 | 600 | 0.0003 | - |
|
168 |
+
| 0.1989 | 650 | 0.0003 | - |
|
169 |
+
| 0.2142 | 700 | 0.0002 | - |
|
170 |
+
| 0.2295 | 750 | 0.0002 | - |
|
171 |
+
| 0.2448 | 800 | 0.0002 | - |
|
172 |
+
| 0.2601 | 850 | 0.0001 | - |
|
173 |
+
| 0.2754 | 900 | 0.0001 | - |
|
174 |
+
| 0.2907 | 950 | 0.0001 | - |
|
175 |
+
| 0.3060 | 1000 | 0.0001 | - |
|
176 |
+
| 0.3213 | 1050 | 0.0001 | - |
|
177 |
+
| 0.3366 | 1100 | 0.0001 | - |
|
178 |
+
| 0.3519 | 1150 | 0.0001 | - |
|
179 |
+
| 0.3672 | 1200 | 0.0001 | - |
|
180 |
+
| 0.3825 | 1250 | 0.0001 | - |
|
181 |
+
| 0.3978 | 1300 | 0.0001 | - |
|
182 |
+
| 0.4131 | 1350 | 0.0001 | - |
|
183 |
+
| 0.4284 | 1400 | 0.0001 | - |
|
184 |
+
| 0.4437 | 1450 | 0.0001 | - |
|
185 |
+
| 0.4590 | 1500 | 0.0 | - |
|
186 |
+
| 0.4743 | 1550 | 0.0001 | - |
|
187 |
+
| 0.4896 | 1600 | 0.0 | - |
|
188 |
+
| 0.5049 | 1650 | 0.0001 | - |
|
189 |
+
| 0.5202 | 1700 | 0.0 | - |
|
190 |
+
| 0.5355 | 1750 | 0.0 | - |
|
191 |
+
| 0.5508 | 1800 | 0.0 | - |
|
192 |
+
| 0.5661 | 1850 | 0.0 | - |
|
193 |
+
| 0.5814 | 1900 | 0.0 | - |
|
194 |
+
| 0.5967 | 1950 | 0.0 | - |
|
195 |
+
| 0.6120 | 2000 | 0.0 | - |
|
196 |
+
| 0.6273 | 2050 | 0.0 | - |
|
197 |
+
| 0.6426 | 2100 | 0.0 | - |
|
198 |
+
| 0.6579 | 2150 | 0.0 | - |
|
199 |
+
| 0.6732 | 2200 | 0.0 | - |
|
200 |
+
| 0.6885 | 2250 | 0.0 | - |
|
201 |
+
| 0.7038 | 2300 | 0.0 | - |
|
202 |
+
| 0.7191 | 2350 | 0.0 | - |
|
203 |
+
| 0.7344 | 2400 | 0.0 | - |
|
204 |
+
| 0.7497 | 2450 | 0.0 | - |
|
205 |
+
| 0.7650 | 2500 | 0.0 | - |
|
206 |
+
| 0.7803 | 2550 | 0.0 | - |
|
207 |
+
| 0.7956 | 2600 | 0.0 | - |
|
208 |
+
| 0.8109 | 2650 | 0.0 | - |
|
209 |
+
| 0.8262 | 2700 | 0.0 | - |
|
210 |
+
| 0.8415 | 2750 | 0.0 | - |
|
211 |
+
| 0.8568 | 2800 | 0.0 | - |
|
212 |
+
| 0.8721 | 2850 | 0.0 | - |
|
213 |
+
| 0.8874 | 2900 | 0.0 | - |
|
214 |
+
| 0.9027 | 2950 | 0.0 | - |
|
215 |
+
| 0.9180 | 3000 | 0.0 | - |
|
216 |
+
| 0.9333 | 3050 | 0.0 | - |
|
217 |
+
| 0.9486 | 3100 | 0.0 | - |
|
218 |
+
| 0.9639 | 3150 | 0.0 | - |
|
219 |
+
| 0.9792 | 3200 | 0.0 | - |
|
220 |
+
| 0.9945 | 3250 | 0.0 | - |
|
221 |
+
| 1.0 | 3268 | - | 0.0497 |
|
222 |
+
| 1.0098 | 3300 | 0.0 | - |
|
223 |
+
| 1.0251 | 3350 | 0.0 | - |
|
224 |
+
| 1.0404 | 3400 | 0.0 | - |
|
225 |
+
| 1.0557 | 3450 | 0.0 | - |
|
226 |
+
| 1.0710 | 3500 | 0.0 | - |
|
227 |
+
| 1.0863 | 3550 | 0.0 | - |
|
228 |
+
| 1.1016 | 3600 | 0.0 | - |
|
229 |
+
| 1.1169 | 3650 | 0.0 | - |
|
230 |
+
| 1.1322 | 3700 | 0.0 | - |
|
231 |
+
| 1.1475 | 3750 | 0.0 | - |
|
232 |
+
| 1.1628 | 3800 | 0.0 | - |
|
233 |
+
| 1.1781 | 3850 | 0.0 | - |
|
234 |
+
| 1.1934 | 3900 | 0.0 | - |
|
235 |
+
| 1.2087 | 3950 | 0.0 | - |
|
236 |
+
| 1.2240 | 4000 | 0.0 | - |
|
237 |
+
| 1.2393 | 4050 | 0.0 | - |
|
238 |
+
| 1.2546 | 4100 | 0.0 | - |
|
239 |
+
| 1.2699 | 4150 | 0.0 | - |
|
240 |
+
| 1.2852 | 4200 | 0.0 | - |
|
241 |
+
| 1.3005 | 4250 | 0.0 | - |
|
242 |
+
| 1.3158 | 4300 | 0.0 | - |
|
243 |
+
| 1.3311 | 4350 | 0.0 | - |
|
244 |
+
| 1.3464 | 4400 | 0.0 | - |
|
245 |
+
| 1.3617 | 4450 | 0.0 | - |
|
246 |
+
| 1.3770 | 4500 | 0.0 | - |
|
247 |
+
| 1.3923 | 4550 | 0.0 | - |
|
248 |
+
| 1.4076 | 4600 | 0.0 | - |
|
249 |
+
| 1.4229 | 4650 | 0.0 | - |
|
250 |
+
| 1.4382 | 4700 | 0.0 | - |
|
251 |
+
| 1.4535 | 4750 | 0.0 | - |
|
252 |
+
| 1.4688 | 4800 | 0.0 | - |
|
253 |
+
| 1.4841 | 4850 | 0.0 | - |
|
254 |
+
| 1.4994 | 4900 | 0.0 | - |
|
255 |
+
| 1.5147 | 4950 | 0.0 | - |
|
256 |
+
| 1.5300 | 5000 | 0.0 | - |
|
257 |
+
| 1.5453 | 5050 | 0.0 | - |
|
258 |
+
| 1.5606 | 5100 | 0.0 | - |
|
259 |
+
| 1.5759 | 5150 | 0.0 | - |
|
260 |
+
| 1.5912 | 5200 | 0.0 | - |
|
261 |
+
| 1.6065 | 5250 | 0.0 | - |
|
262 |
+
| 1.6218 | 5300 | 0.0 | - |
|
263 |
+
| 1.6371 | 5350 | 0.0 | - |
|
264 |
+
| 1.6524 | 5400 | 0.0 | - |
|
265 |
+
| 1.6677 | 5450 | 0.0 | - |
|
266 |
+
| 1.6830 | 5500 | 0.0 | - |
|
267 |
+
| 1.6983 | 5550 | 0.0 | - |
|
268 |
+
| 1.7136 | 5600 | 0.0 | - |
|
269 |
+
| 1.7289 | 5650 | 0.0 | - |
|
270 |
+
| 1.7442 | 5700 | 0.0 | - |
|
271 |
+
| 1.7595 | 5750 | 0.0 | - |
|
272 |
+
| 1.7748 | 5800 | 0.0 | - |
|
273 |
+
| 1.7901 | 5850 | 0.0 | - |
|
274 |
+
| 1.8054 | 5900 | 0.0 | - |
|
275 |
+
| 1.8207 | 5950 | 0.0 | - |
|
276 |
+
| 1.8360 | 6000 | 0.0 | - |
|
277 |
+
| 1.8513 | 6050 | 0.0 | - |
|
278 |
+
| 1.8666 | 6100 | 0.0 | - |
|
279 |
+
| 1.8819 | 6150 | 0.0 | - |
|
280 |
+
| 1.8972 | 6200 | 0.0 | - |
|
281 |
+
| 1.9125 | 6250 | 0.0 | - |
|
282 |
+
| 1.9278 | 6300 | 0.0 | - |
|
283 |
+
| 1.9431 | 6350 | 0.0 | - |
|
284 |
+
| 1.9584 | 6400 | 0.0 | - |
|
285 |
+
| 1.9737 | 6450 | 0.0 | - |
|
286 |
+
| 1.9890 | 6500 | 0.0 | - |
|
287 |
+
| 2.0 | 6536 | - | 0.056 |
|
288 |
+
| 2.0043 | 6550 | 0.0 | - |
|
289 |
+
| 2.0196 | 6600 | 0.0 | - |
|
290 |
+
| 2.0349 | 6650 | 0.0 | - |
|
291 |
+
| 2.0502 | 6700 | 0.0 | - |
|
292 |
+
| 2.0655 | 6750 | 0.0 | - |
|
293 |
+
| 2.0808 | 6800 | 0.0 | - |
|
294 |
+
| 2.0961 | 6850 | 0.0 | - |
|
295 |
+
| 2.1114 | 6900 | 0.0 | - |
|
296 |
+
| 2.1267 | 6950 | 0.0 | - |
|
297 |
+
| 2.1420 | 7000 | 0.0 | - |
|
298 |
+
| 2.1573 | 7050 | 0.0 | - |
|
299 |
+
| 2.1726 | 7100 | 0.0 | - |
|
300 |
+
| 2.1879 | 7150 | 0.0 | - |
|
301 |
+
| 2.2032 | 7200 | 0.0 | - |
|
302 |
+
| 2.2185 | 7250 | 0.0 | - |
|
303 |
+
| 2.2338 | 7300 | 0.0 | - |
|
304 |
+
| 2.2491 | 7350 | 0.0 | - |
|
305 |
+
| 2.2644 | 7400 | 0.0 | - |
|
306 |
+
| 2.2797 | 7450 | 0.0 | - |
|
307 |
+
| 2.2950 | 7500 | 0.0 | - |
|
308 |
+
| 2.3103 | 7550 | 0.0 | - |
|
309 |
+
| 2.3256 | 7600 | 0.0 | - |
|
310 |
+
| 2.3409 | 7650 | 0.0 | - |
|
311 |
+
| 2.3562 | 7700 | 0.0 | - |
|
312 |
+
| 2.3715 | 7750 | 0.0 | - |
|
313 |
+
| 2.3868 | 7800 | 0.0 | - |
|
314 |
+
| 2.4021 | 7850 | 0.0 | - |
|
315 |
+
| 2.4174 | 7900 | 0.0 | - |
|
316 |
+
| 2.4327 | 7950 | 0.0 | - |
|
317 |
+
| 2.4480 | 8000 | 0.0 | - |
|
318 |
+
| 2.4633 | 8050 | 0.0 | - |
|
319 |
+
| 2.4786 | 8100 | 0.0 | - |
|
320 |
+
| 2.4939 | 8150 | 0.0 | - |
|
321 |
+
| 2.5092 | 8200 | 0.0 | - |
|
322 |
+
| 2.5245 | 8250 | 0.0 | - |
|
323 |
+
| 2.5398 | 8300 | 0.0 | - |
|
324 |
+
| 2.5551 | 8350 | 0.0 | - |
|
325 |
+
| 2.5704 | 8400 | 0.0 | - |
|
326 |
+
| 2.5857 | 8450 | 0.0 | - |
|
327 |
+
| 2.6010 | 8500 | 0.0 | - |
|
328 |
+
| 2.6163 | 8550 | 0.0 | - |
|
329 |
+
| 2.6316 | 8600 | 0.0 | - |
|
330 |
+
| 2.6469 | 8650 | 0.0 | - |
|
331 |
+
| 2.6622 | 8700 | 0.0 | - |
|
332 |
+
| 2.6775 | 8750 | 0.0 | - |
|
333 |
+
| 2.6928 | 8800 | 0.0 | - |
|
334 |
+
| 2.7081 | 8850 | 0.0 | - |
|
335 |
+
| 2.7234 | 8900 | 0.0 | - |
|
336 |
+
| 2.7387 | 8950 | 0.0 | - |
|
337 |
+
| 2.7540 | 9000 | 0.0 | - |
|
338 |
+
| 2.7693 | 9050 | 0.0 | - |
|
339 |
+
| 2.7846 | 9100 | 0.0 | - |
|
340 |
+
| 2.7999 | 9150 | 0.0 | - |
|
341 |
+
| 2.8152 | 9200 | 0.0 | - |
|
342 |
+
| 2.8305 | 9250 | 0.0 | - |
|
343 |
+
| 2.8458 | 9300 | 0.0 | - |
|
344 |
+
| 2.8611 | 9350 | 0.0 | - |
|
345 |
+
| 2.8764 | 9400 | 0.0 | - |
|
346 |
+
| 2.8917 | 9450 | 0.0 | - |
|
347 |
+
| 2.9070 | 9500 | 0.0 | - |
|
348 |
+
| 2.9223 | 9550 | 0.0 | - |
|
349 |
+
| 2.9376 | 9600 | 0.0 | - |
|
350 |
+
| 2.9529 | 9650 | 0.0 | - |
|
351 |
+
| 2.9682 | 9700 | 0.0 | - |
|
352 |
+
| 2.9835 | 9750 | 0.0 | - |
|
353 |
+
| 2.9988 | 9800 | 0.0 | - |
|
354 |
+
| 3.0 | 9804 | - | 0.061 |
|
355 |
+
| 3.0141 | 9850 | 0.0 | - |
|
356 |
+
| 3.0294 | 9900 | 0.0 | - |
|
357 |
+
| 3.0447 | 9950 | 0.0 | - |
|
358 |
+
| 3.0600 | 10000 | 0.0 | - |
|
359 |
+
| 3.0753 | 10050 | 0.0 | - |
|
360 |
+
| 3.0906 | 10100 | 0.0 | - |
|
361 |
+
| 3.1059 | 10150 | 0.0 | - |
|
362 |
+
| 3.1212 | 10200 | 0.0 | - |
|
363 |
+
| 3.1365 | 10250 | 0.0 | - |
|
364 |
+
| 3.1518 | 10300 | 0.0 | - |
|
365 |
+
| 3.1671 | 10350 | 0.0 | - |
|
366 |
+
| 3.1824 | 10400 | 0.0 | - |
|
367 |
+
| 3.1977 | 10450 | 0.0 | - |
|
368 |
+
| 3.2130 | 10500 | 0.0 | - |
|
369 |
+
| 3.2283 | 10550 | 0.0 | - |
|
370 |
+
| 3.2436 | 10600 | 0.0 | - |
|
371 |
+
| 3.2589 | 10650 | 0.0 | - |
|
372 |
+
| 3.2742 | 10700 | 0.0 | - |
|
373 |
+
| 3.2895 | 10750 | 0.0 | - |
|
374 |
+
| 3.3048 | 10800 | 0.0 | - |
|
375 |
+
| 3.3201 | 10850 | 0.0 | - |
|
376 |
+
| 3.3354 | 10900 | 0.0 | - |
|
377 |
+
| 3.3507 | 10950 | 0.0 | - |
|
378 |
+
| 3.3660 | 11000 | 0.0 | - |
|
379 |
+
| 3.3813 | 11050 | 0.0 | - |
|
380 |
+
| 3.3966 | 11100 | 0.0 | - |
|
381 |
+
| 3.4119 | 11150 | 0.0 | - |
|
382 |
+
| 3.4272 | 11200 | 0.0001 | - |
|
383 |
+
| 3.4425 | 11250 | 0.0 | - |
|
384 |
+
| 3.4578 | 11300 | 0.0 | - |
|
385 |
+
| 3.4731 | 11350 | 0.0 | - |
|
386 |
+
| 3.4884 | 11400 | 0.0 | - |
|
387 |
+
| 3.5037 | 11450 | 0.0 | - |
|
388 |
+
| 3.5190 | 11500 | 0.0 | - |
|
389 |
+
| 3.5343 | 11550 | 0.0 | - |
|
390 |
+
| 3.5496 | 11600 | 0.0 | - |
|
391 |
+
| 3.5649 | 11650 | 0.0 | - |
|
392 |
+
| 3.5802 | 11700 | 0.0 | - |
|
393 |
+
| 3.5955 | 11750 | 0.0 | - |
|
394 |
+
| 3.6108 | 11800 | 0.0 | - |
|
395 |
+
| 3.6261 | 11850 | 0.0 | - |
|
396 |
+
| 3.6414 | 11900 | 0.0 | - |
|
397 |
+
| 3.6567 | 11950 | 0.0 | - |
|
398 |
+
| 3.6720 | 12000 | 0.0 | - |
|
399 |
+
| 3.6873 | 12050 | 0.0 | - |
|
400 |
+
| 3.7026 | 12100 | 0.0 | - |
|
401 |
+
| 3.7179 | 12150 | 0.0 | - |
|
402 |
+
| 3.7332 | 12200 | 0.0 | - |
|
403 |
+
| 3.7485 | 12250 | 0.0 | - |
|
404 |
+
| 3.7638 | 12300 | 0.0 | - |
|
405 |
+
| 3.7791 | 12350 | 0.0 | - |
|
406 |
+
| 3.7944 | 12400 | 0.0 | - |
|
407 |
+
| 3.8097 | 12450 | 0.0 | - |
|
408 |
+
| 3.8250 | 12500 | 0.0 | - |
|
409 |
+
| 3.8403 | 12550 | 0.0 | - |
|
410 |
+
| 3.8556 | 12600 | 0.0 | - |
|
411 |
+
| 3.8709 | 12650 | 0.0 | - |
|
412 |
+
| 3.8862 | 12700 | 0.0 | - |
|
413 |
+
| 3.9015 | 12750 | 0.0 | - |
|
414 |
+
| 3.9168 | 12800 | 0.0 | - |
|
415 |
+
| 3.9321 | 12850 | 0.0 | - |
|
416 |
+
| 3.9474 | 12900 | 0.0 | - |
|
417 |
+
| 3.9627 | 12950 | 0.0 | - |
|
418 |
+
| 3.9780 | 13000 | 0.0 | - |
|
419 |
+
| 3.9933 | 13050 | 0.0 | - |
|
420 |
+
| **4.0** | **13072** | **-** | **0.0479** |
|
421 |
+
|
422 |
+
* The bold row denotes the saved checkpoint.
|
423 |
+
### Framework Versions
|
424 |
+
- Python: 3.9.18
|
425 |
+
- SetFit: 1.0.3
|
426 |
+
- Sentence Transformers: 2.2.1
|
427 |
+
- Transformers: 4.32.1
|
428 |
+
- PyTorch: 1.10.0
|
429 |
+
- Datasets: 2.20.0
|
430 |
+
- Tokenizers: 0.13.3
|
431 |
+
|
432 |
+
## Citation
|
433 |
+
|
434 |
+
### BibTeX
|
435 |
+
```bibtex
|
436 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
437 |
+
doi = {10.48550/ARXIV.2209.11055},
|
438 |
+
url = {https://arxiv.org/abs/2209.11055},
|
439 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
440 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
441 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
442 |
+
publisher = {arXiv},
|
443 |
+
year = {2022},
|
444 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
445 |
+
}
|
446 |
+
```
|
447 |
+
|
448 |
+
<!--
|
449 |
+
## Glossary
|
450 |
+
|
451 |
+
*Clearly define terms in order to be accessible across audiences.*
|
452 |
+
-->
|
453 |
+
|
454 |
+
<!--
|
455 |
+
## Model Card Authors
|
456 |
+
|
457 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
458 |
+
-->
|
459 |
+
|
460 |
+
<!--
|
461 |
+
## Model Card Contact
|
462 |
+
|
463 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
464 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "checkpoints/step_13072/",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"tokenizer_class": "BertTokenizer",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.32.1",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 32000
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.1.0",
|
4 |
+
"transformers": "4.13.0",
|
5 |
+
"pytorch": "1.7.0+cu110"
|
6 |
+
}
|
7 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"normalize_embeddings": false,
|
3 |
+
"labels": [
|
4 |
+
"rag",
|
5 |
+
"general"
|
6 |
+
]
|
7 |
+
}
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b803e130af8176c6a5f09d4f0f4980d3b68fad01c59a87d6f32b1a4f959f7be7
|
3 |
+
size 31807
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1348e19b347964f5ae8a88b8622faca7925f98eb8f2e01802bd2246463e1fdf2
|
3 |
+
size 442537395
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "[CLS]",
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"eos_token": "[SEP]",
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"pad_token": "[PAD]",
|
7 |
+
"sep_token": "[SEP]",
|
8 |
+
"unk_token": "[UNK]"
|
9 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "[CLS]",
|
3 |
+
"clean_up_tokenization_spaces": true,
|
4 |
+
"cls_token": "[CLS]",
|
5 |
+
"do_basic_tokenize": true,
|
6 |
+
"do_lower_case": false,
|
7 |
+
"eos_token": "[SEP]",
|
8 |
+
"mask_token": "[MASK]",
|
9 |
+
"max_length": 128,
|
10 |
+
"model_max_length": 512,
|
11 |
+
"never_split": null,
|
12 |
+
"pad_to_multiple_of": null,
|
13 |
+
"pad_token": "[PAD]",
|
14 |
+
"pad_token_type_id": 0,
|
15 |
+
"padding_side": "right",
|
16 |
+
"sep_token": "[SEP]",
|
17 |
+
"stride": 0,
|
18 |
+
"strip_accents": null,
|
19 |
+
"tokenize_chinese_chars": true,
|
20 |
+
"tokenizer_class": "BertTokenizer",
|
21 |
+
"truncation_side": "right",
|
22 |
+
"truncation_strategy": "longest_first",
|
23 |
+
"unk_token": "[UNK]"
|
24 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|