nhanv commited on
Commit
69bb499
1 Parent(s): 6d0c0e4

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -0
README.md ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: tongyi-qianwen
4
+ license_link: >-
5
+ https://huggingface.co/Qwen/CodeQwen1.5-7B-Chat/blob/main/LICENSE
6
+ language:
7
+ - en
8
+ pipeline_tag: text-generation
9
+ tags:
10
+ - chat
11
+ ---
12
+
13
+ # Nxcode-CQ-7B-orpo
14
+
15
+
16
+ ## Introduction
17
+
18
+ Nxcode-CQ-7B-orpo is the Code-Specific version of Qwen1.5. It is a transformer-based decoder-only language model pretrained on a large amount of data of codes.
19
+
20
+ * Strong code generation capabilities and competitve performance across a series of benchmarks;
21
+ * Supporting long context understanding and generation with the context length of 64K tokens;
22
+ * Supporting 92 coding languages
23
+ * Excellent performance in text-to-SQL, bug fix, etc.
24
+
25
+ ## Quickstart
26
+
27
+ Here provides a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and how to generate contents.
28
+
29
+ ```python
30
+ from transformers import AutoModelForCausalLM, AutoTokenizer
31
+ device = "cuda" # the device to load the model onto
32
+
33
+ model = AutoModelForCausalLM.from_pretrained(
34
+ "Qwen/CodeQwen1.5-7B-Chat",
35
+ torch_dtype="auto",
36
+ device_map="auto"
37
+ )
38
+ tokenizer = AutoTokenizer.from_pretrained("NTQAI/Nxcode-CQ-7B-orpo")
39
+
40
+ prompt = "Write a quicksort algorithm in python."
41
+ messages = [
42
+ {"role": "system", "content": "You are a helpful assistant."},
43
+ {"role": "user", "content": prompt}
44
+ ]
45
+ text = tokenizer.apply_chat_template(
46
+ messages,
47
+ tokenize=False,
48
+ add_generation_prompt=True
49
+ )
50
+ model_inputs = tokenizer([text], return_tensors="pt").to(device)
51
+
52
+ generated_ids = model.generate(
53
+ model_inputs.input_ids,
54
+ max_new_tokens=512
55
+ )
56
+ generated_ids = [
57
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
58
+ ]
59
+
60
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
61
+ ```