Korbinian Pöppel
commited on
Commit
·
90f1e33
1
Parent(s):
7746361
Fix: Typo.
Browse files
README.md
CHANGED
@@ -2,8 +2,8 @@
|
|
2 |
license: other
|
3 |
---
|
4 |
|
5 |
-
# xLSTM
|
6 |
-
This xLSTM was pre-trained on the DCLM and selected high-quality data for in a total of approx. 2.3 T tokens using the `xlstm-jax` framework.
|
7 |
|
8 |
|
9 |
## How to use it
|
@@ -26,13 +26,13 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
26 |
xlstm = AutoModelForCausalLM.from_pretrained("NX-AI/xLSTM-7b", device_map="auto")
|
27 |
|
28 |
# this is a fork of EleutherAI/gpt-neox-20b
|
29 |
-
|
30 |
|
31 |
xlstm(tokenizer("Hello xLSTM, how are you doing?"))
|
32 |
```
|
33 |
|
34 |
## Speed results
|
35 |
-
Generation Speed using `torch.cuda.graph` and `torch.compile` optimizations:
|
36 |
![generation speed](plot_tokens_per_sec.svg)
|
37 |
|
38 |
## Performance
|
@@ -52,4 +52,3 @@ Using HuggingFace's `lighteval` in the Leaderboard-v1 settings:
|
|
52 |
|
53 |
## License
|
54 |
NXAI Community License (see `LICENSE` file)
|
55 |
-
|
|
|
2 |
license: other
|
3 |
---
|
4 |
|
5 |
+
# xLSTM-7B
|
6 |
+
This xLSTM-7B was pre-trained on the DCLM and selected high-quality data for in a total of approx. 2.3 T tokens using the `xlstm-jax` framework.
|
7 |
|
8 |
|
9 |
## How to use it
|
|
|
26 |
xlstm = AutoModelForCausalLM.from_pretrained("NX-AI/xLSTM-7b", device_map="auto")
|
27 |
|
28 |
# this is a fork of EleutherAI/gpt-neox-20b
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained("NX-AI/xLSTM-7b")
|
30 |
|
31 |
xlstm(tokenizer("Hello xLSTM, how are you doing?"))
|
32 |
```
|
33 |
|
34 |
## Speed results
|
35 |
+
Generation Speed using `torch.cuda.graph` and `torch.compile` optimizations on one NVIDIA H100:
|
36 |
![generation speed](plot_tokens_per_sec.svg)
|
37 |
|
38 |
## Performance
|
|
|
52 |
|
53 |
## License
|
54 |
NXAI Community License (see `LICENSE` file)
|
|