NXBY commited on
Commit
f1567bb
·
1 Parent(s): 329b9b5

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 256.03 +/- 30.45
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb97285bca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb97285bd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb97285bdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb97285be50>", "_build": "<function ActorCriticPolicy._build at 0x7fb97285bee0>", "forward": "<function ActorCriticPolicy.forward at 0x7fb97285bf70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb972861040>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb9728610d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb972861160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb9728611f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb972861280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb9728d8480>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671717963161052290, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJofITxc50W64/2ZuFVSybMNs+w6BRO1NwAAgD8AAIA/wFnAPcOZaLq27Ys61Kv4teU6/zky7qO5AACAPwAAgD/jaaa+e+rnPuXSlD7DmpG+Tp+pveo/tT0AAAAAAAAAAIA/Kb0UtIO6jkbSu1BuwDjTqTq7WHuQNwAAgD8AAIA/zZwMPSkUdbo+rRc6ThTBNU6iabuETjG5AACAPwAAgD9mDCK9SOWYulRPybU6TkaxGSUDOwWI9TQAAIA/AACAPxprOD17Yoy6JWneuuBM7rWBFd26vj0BOgAAgD8AAIA/mpmMvB99vLnDXlA3tzm3MQUonrqdanm2AACAPwAAgD+aKHG9KYxguuvNsTrNWvy07DABu3ETzLkAAIA/AACAP+Y8Cb3hQIa6rq77tyyHaramNuC6DsnkNQAAgD8AAIA/+iwXPsOvELzRoIc8ZLnmuiglb72adb67AACAPwAAgD8NzoG+LkiOPwnjB7+uO/O+4yy3vsC7670AAAAAAAAAACbxob3hYpq6C4BZt5piy7L9yQQ7liJ3NgAAgD8AAIA/QJb9PeZ4hj6Ym5m9poGbvjZ8JzwbwX48AAAAAAAAAACAWIM93Ba3PjYYXDzRIYK+2ibrPKetkj0AAAAAAAAAAEAQsz32GHK6O5rUu3kTKjpnSia7IMHEugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6ndhazY/ZUCUhpRSlIwBbJRN6AOMAXSUR0Cdq/WV/tpmdX2UKGgGaAloD0MITN9rCI49Z0CUhpRSlGgVTegDaBZHQJ22e0TlDF91fZQoaAZoCWgPQwhqvd9ox0pnQJSGlFKUaBVN6ANoFkdAnbwVFDv3J3V9lChoBmgJaA9DCOrouBpZemNAlIaUUpRoFU3oA2gWR0CdvHL7XQMQdX2UKGgGaAloD0MIge1gxL5aZkCUhpRSlGgVTegDaBZHQJ2/4L/jsD51fZQoaAZoCWgPQwh4X5ULlQJmQJSGlFKUaBVN6ANoFkdAncZ5zo2XLXV9lChoBmgJaA9DCGxaKQTy3WNAlIaUUpRoFU3oA2gWR0Cdz0TcIqsmdX2UKGgGaAloD0MI6Po+HCRHW0CUhpRSlGgVTegDaBZHQJ3XiHARChN1fZQoaAZoCWgPQwi2gqYl1h5iQJSGlFKUaBVN6ANoFkdAndgBV2iconV9lChoBmgJaA9DCIYfnE8df2ZAlIaUUpRoFU3oA2gWR0Cd2aYXfqHHdX2UKGgGaAloD0MIOPWB5J3fY0CUhpRSlGgVTegDaBZHQJ3Z5d8iOed1fZQoaAZoCWgPQwhjQswl1SRhQJSGlFKUaBVN6ANoFkdAndn2J79hqnV9lChoBmgJaA9DCEC9GTVfGmZAlIaUUpRoFU3oA2gWR0Cd7xYB/7SBdX2UKGgGaAloD0MIVACMZ1BNZECUhpRSlGgVTegDaBZHQJ3xSu6mO2l1fZQoaAZoCWgPQwjqeqLrwl9kQJSGlFKUaBVN6ANoFkdAnfUHoxHoYHV9lChoBmgJaA9DCLr3cMlxsF5AlIaUUpRoFU3oA2gWR0Cd/S0Gu9vkdX2UKGgGaAloD0MIi/7QzBMrYUCUhpRSlGgVTegDaBZHQJ39LsjVx0d1fZQoaAZoCWgPQwiponiVtZhjQJSGlFKUaBVN6ANoFkdAngXRXGOuJXV9lChoBmgJaA9DCA0c0NIV/mRAlIaUUpRoFU3oA2gWR0CeCoLlFMIvdX2UKGgGaAloD0MIWivaHOf1YUCUhpRSlGgVTegDaBZHQJ4KzpD/lyR1fZQoaAZoCWgPQwg/VYUGYj1dQJSGlFKUaBVN6ANoFkdAng3vTPSlWXV9lChoBmgJaA9DCFex+E1hxV1AlIaUUpRoFU3oA2gWR0CeE/3W4EwGdX2UKGgGaAloD0MI6x7ZXLUhZ0CUhpRSlGgVTegDaBZHQJ4cjMKTjed1fZQoaAZoCWgPQwivXG+bKYtlQJSGlFKUaBVN6ANoFkdAniTBvegte3V9lChoBmgJaA9DCGgfK/jtz2NAlIaUUpRoFU3oA2gWR0CeJS9hZyMldX2UKGgGaAloD0MILXx9rUulZUCUhpRSlGgVTegDaBZHQJ4muycCo0h1fZQoaAZoCWgPQwjI0/IDV3VjQJSGlFKUaBVN6ANoFkdAnib4wIt16nV9lChoBmgJaA9DCAtgysAB42NAlIaUUpRoFU3oA2gWR0CeJwedTYNBdX2UKGgGaAloD0MI8wUtJOB6Z0CUhpRSlGgVTegDaBZHQJ48K6RQrMF1fZQoaAZoCWgPQwhiSbn7nHhhQJSGlFKUaBVN6ANoFkdAnj6Pn8sMAnV9lChoBmgJaA9DCASuK2aEDmBAlIaUUpRoFU3oA2gWR0CeQozdUKiPdX2UKGgGaAloD0MIAK5kx8Y/YkCUhpRSlGgVTegDaBZHQJ5LBsJpnHx1fZQoaAZoCWgPQwgTDOca5lllQJSGlFKUaBVN6ANoFkdAnksIV6/qPnV9lChoBmgJaA9DCMu+K4J/4WNAlIaUUpRoFU3oA2gWR0CeU+wnpjc3dX2UKGgGaAloD0MIKGIRw46ZY0CUhpRSlGgVTegDaBZHQJ5YiGpMpPR1fZQoaAZoCWgPQwg9RnnmZZtjQJSGlFKUaBVN6ANoFkdAnljWll9SdnV9lChoBmgJaA9DCGXCL/Vz4mJAlIaUUpRoFU3oA2gWR0CeW+e+Eh7mdX2UKGgGaAloD0MIzsZKzDPRZUCUhpRSlGgVTegDaBZHQJ5haNhmXgN1fZQoaAZoCWgPQwhaY9AJIbNlQJSGlFKUaBVN6ANoFkdAnmm6bKA8S3V9lChoBmgJaA9DCBLds67RUGJAlIaUUpRoFU3oA2gWR0CecfPLxI8RdX2UKGgGaAloD0MIhXe5iG9JZECUhpRSlGgVTegDaBZHQJ5yZLh73PB1fZQoaAZoCWgPQwgMWHIVC5BkQJSGlFKUaBVN6ANoFkdAnnP9YSxqwnV9lChoBmgJaA9DCJ0Rpb1BWWBAlIaUUpRoFU3oA2gWR0CedD6SDAaedX2UKGgGaAloD0MIXkccsoGoZECUhpRSlGgVTegDaBZHQJ50TuF6Avt1fZQoaAZoCWgPQwhcyvli79hjQJSGlFKUaBVN6ANoFkdAnnZMzl90BHV9lChoBmgJaA9DCE1p/S0BXGRAlIaUUpRoFU3oA2gWR0CejGrqMWGidX2UKGgGaAloD0MIERyXcdMIYkCUhpRSlGgVTegDaBZHQJ6Q7HT7VKB1fZQoaAZoCWgPQwiaJJaUu2RjQJSGlFKUaBVN6ANoFkdAnpqQkLQXynV9lChoBmgJaA9DCIXP1sFBgWZAlIaUUpRoFU3oA2gWR0CempJL/S6UdX2UKGgGaAloD0MIFRvzOmIKYkCUhpRSlGgVTegDaBZHQJ6jdqh11W91fZQoaAZoCWgPQwiGcqJdhTxsQJSGlFKUaBVNugFoFkdAnqPCT2WY4XV9lChoBmgJaA9DCGrbMAqCfy7AlIaUUpRoFUu+aBZHQJ6mAqhDgIh1fZQoaAZoCWgPQwhFLGLY4QJjQJSGlFKUaBVN6ANoFkdAnqgMr/bTMXV9lChoBmgJaA9DCAJIbeLkPmhAlIaUUpRoFU3oA2gWR0CeqFuvllshdX2UKGgGaAloD0MI4biMm5rhYECUhpRSlGgVTegDaBZHQJ6rd7PY4AF1fZQoaAZoCWgPQwhUAIxn0MVhQJSGlFKUaBVN6ANoFkdAnrDxUm2LHnV9lChoBmgJaA9DCKmkTkATsmdAlIaUUpRoFU3oA2gWR0CeuXgi/wiJdX2UKGgGaAloD0MIev8fJ8xKY0CUhpRSlGgVTegDaBZHQJ7CH2h7E511fZQoaAZoCWgPQwiFPljGBnJmQJSGlFKUaBVN6ANoFkdAnsKZE+gUUXV9lChoBmgJaA9DCP0v16KFp2NAlIaUUpRoFU3oA2gWR0CexF/LkjoqdX2UKGgGaAloD0MIQbrYtFJtXUCUhpRSlGgVTegDaBZHQJ7Eoy2x6fJ1fZQoaAZoCWgPQwhU4c/w5rhjQJSGlFKUaBVN6ANoFkdAnsS09pyp73V9lChoBmgJaA9DCNHLKJZbhWNAlIaUUpRoFU3oA2gWR0Ce3NTPjXFtdX2UKGgGaAloD0MIVJCfjdxKZkCUhpRSlGgVTegDaBZHQJ7hn1jAi3Z1fZQoaAZoCWgPQwhqGD4ipmZwQJSGlFKUaBVNewJoFkdAnuLEoa1kUnV9lChoBmgJaA9DCAlOfSA5WnBAlIaUUpRoFU3hAmgWR0Ce5HcQAdXDdX2UKGgGaAloD0MIK6VneolRPkCUhpRSlGgVS9loFkdAnuSzHGS6lXV9lChoBmgJaA9DCKcjgJtFNWVAlIaUUpRoFU3oA2gWR0Ce6rOfNA1OdX2UKGgGaAloD0MIDqK1os2ROECUhpRSlGgVS/5oFkdAnvLjvy9VWHV9lChoBmgJaA9DCIidKXTe7WNAlIaUUpRoFU3oA2gWR0Ce8zhSLqD9dX2UKGgGaAloD0MIinYVUn6AY0CUhpRSlGgVTegDaBZHQJ71vyZrpJR1fZQoaAZoCWgPQwh72uGvyYxeQJSGlFKUaBVN6ANoFkdAnvfjdDYywnV9lChoBmgJaA9DCE+uKZBZYmBAlIaUUpRoFU3oA2gWR0Ce+oLNOdoWdX2UKGgGaAloD0MIev1JfO4eSECUhpRSlGgVS+hoFkdAnv9LoOhCdHV9lChoBmgJaA9DCOcb0T1rjGNAlIaUUpRoFU3oA2gWR0Ce/0zXjENwdX2UKGgGaAloD0MIexNDcrITYUCUhpRSlGgVTegDaBZHQJ8GFqfvnbJ1fZQoaAZoCWgPQwhV3o5w2rljQJSGlFKUaBVN6ANoFkdAnwyzXnQpnnV9lChoBmgJaA9DCKeU10rorWVAlIaUUpRoFU3oA2gWR0CfDRISlFc6dX2UKGgGaAloD0MI5+EEptNjYkCUhpRSlGgVTegDaBZHQJ8OWfra/RF1fZQoaAZoCWgPQwgC1xUzwmNjQJSGlFKUaBVN6ANoFkdAnw6Olj3Eh3V9lChoBmgJaA9DCKmHaHQHrGdAlIaUUpRoFU3oA2gWR0CfEoVqesgddX2UKGgGaAloD0MIRtEDHwNqZkCUhpRSlGgVTegDaBZHQJ8p0D6nBLx1fZQoaAZoCWgPQwi4dqIkpK5hQJSGlFKUaBVN6ANoFkdAnyrClvZRK3V9lChoBmgJaA9DCDfBN02fzVBAlIaUUpRoFUvZaBZHQJ8sRKPGQ0Z1fZQoaAZoCWgPQwhMN4lB4IhiQJSGlFKUaBVN6ANoFkdAnyxTaK1og3V9lChoBmgJaA9DCKXXZmOlY2dAlIaUUpRoFU3oA2gWR0CfMXsRxtHhdX2UKGgGaAloD0MIs0C7Q4pNUkCUhpRSlGgVS9loFkdAnzb2MKkVOHV9lChoBmgJaA9DCH4BvXDnv2VAlIaUUpRoFU3oA2gWR0CfOKejmCAddX2UKGgGaAloD0MIqrpHNtcJZUCUhpRSlGgVTegDaBZHQJ87F7LMcIZ1fZQoaAZoCWgPQwjBN02fHQppQJSGlFKUaBVN6ANoFkdAnzz72YfGMnV9lChoBmgJaA9DCCUGgZXDfmVAlIaUUpRoFU3oA2gWR0CfP22Rq46PdX2UKGgGaAloD0MInBVRE/15bECUhpRSlGgVTbICaBZHQJ9DYRmK64F1fZQoaAZoCWgPQwiF0hdCTvNiQJSGlFKUaBVN6ANoFkdAn0RRxxT853V9lChoBmgJaA9DCK00KQXdXmRAlIaUUpRoFU3oA2gWR0CfRFMaCL/CdX2UKGgGaAloD0MIGjGzz2MUPUCUhpRSlGgVS+toFkdAn0g+6VdHD3V9lChoBmgJaA9DCCVbXU4JpGdAlIaUUpRoFU3oA2gWR0CfSqUQkHD8dX2UKGgGaAloD0MIRtJu9HHzcUCUhpRSlGgVTQcDaBZHQJ9QvSNOuaF1fZQoaAZoCWgPQwjCvTJvVSlpQJSGlFKUaBVN6ANoFkdAn1DnLRrrPnV9lChoBmgJaA9DCBRCB13CKF9AlIaUUpRoFU3oA2gWR0CfUULuhK15dX2UKGgGaAloD0MIWHA/4AERY0CUhpRSlGgVTegDaBZHQJ9XFkAggYB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9de286cfbe397684e2e741343008e9e6ad90352bb475e878e69e9f55a1c33c0
3
+ size 147210
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb97285bca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb97285bd30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb97285bdc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb97285be50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fb97285bee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fb97285bf70>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb972861040>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fb9728610d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb972861160>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb9728611f0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb972861280>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fb9728d8480>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671717963161052290,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJofITxc50W64/2ZuFVSybMNs+w6BRO1NwAAgD8AAIA/wFnAPcOZaLq27Ys61Kv4teU6/zky7qO5AACAPwAAgD/jaaa+e+rnPuXSlD7DmpG+Tp+pveo/tT0AAAAAAAAAAIA/Kb0UtIO6jkbSu1BuwDjTqTq7WHuQNwAAgD8AAIA/zZwMPSkUdbo+rRc6ThTBNU6iabuETjG5AACAPwAAgD9mDCK9SOWYulRPybU6TkaxGSUDOwWI9TQAAIA/AACAPxprOD17Yoy6JWneuuBM7rWBFd26vj0BOgAAgD8AAIA/mpmMvB99vLnDXlA3tzm3MQUonrqdanm2AACAPwAAgD+aKHG9KYxguuvNsTrNWvy07DABu3ETzLkAAIA/AACAP+Y8Cb3hQIa6rq77tyyHaramNuC6DsnkNQAAgD8AAIA/+iwXPsOvELzRoIc8ZLnmuiglb72adb67AACAPwAAgD8NzoG+LkiOPwnjB7+uO/O+4yy3vsC7670AAAAAAAAAACbxob3hYpq6C4BZt5piy7L9yQQ7liJ3NgAAgD8AAIA/QJb9PeZ4hj6Ym5m9poGbvjZ8JzwbwX48AAAAAAAAAACAWIM93Ba3PjYYXDzRIYK+2ibrPKetkj0AAAAAAAAAAEAQsz32GHK6O5rUu3kTKjpnSia7IMHEugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6ndhazY/ZUCUhpRSlIwBbJRN6AOMAXSUR0Cdq/WV/tpmdX2UKGgGaAloD0MITN9rCI49Z0CUhpRSlGgVTegDaBZHQJ22e0TlDF91fZQoaAZoCWgPQwhqvd9ox0pnQJSGlFKUaBVN6ANoFkdAnbwVFDv3J3V9lChoBmgJaA9DCOrouBpZemNAlIaUUpRoFU3oA2gWR0CdvHL7XQMQdX2UKGgGaAloD0MIge1gxL5aZkCUhpRSlGgVTegDaBZHQJ2/4L/jsD51fZQoaAZoCWgPQwh4X5ULlQJmQJSGlFKUaBVN6ANoFkdAncZ5zo2XLXV9lChoBmgJaA9DCGxaKQTy3WNAlIaUUpRoFU3oA2gWR0Cdz0TcIqsmdX2UKGgGaAloD0MI6Po+HCRHW0CUhpRSlGgVTegDaBZHQJ3XiHARChN1fZQoaAZoCWgPQwi2gqYl1h5iQJSGlFKUaBVN6ANoFkdAndgBV2iconV9lChoBmgJaA9DCIYfnE8df2ZAlIaUUpRoFU3oA2gWR0Cd2aYXfqHHdX2UKGgGaAloD0MIOPWB5J3fY0CUhpRSlGgVTegDaBZHQJ3Z5d8iOed1fZQoaAZoCWgPQwhjQswl1SRhQJSGlFKUaBVN6ANoFkdAndn2J79hqnV9lChoBmgJaA9DCEC9GTVfGmZAlIaUUpRoFU3oA2gWR0Cd7xYB/7SBdX2UKGgGaAloD0MIVACMZ1BNZECUhpRSlGgVTegDaBZHQJ3xSu6mO2l1fZQoaAZoCWgPQwjqeqLrwl9kQJSGlFKUaBVN6ANoFkdAnfUHoxHoYHV9lChoBmgJaA9DCLr3cMlxsF5AlIaUUpRoFU3oA2gWR0Cd/S0Gu9vkdX2UKGgGaAloD0MIi/7QzBMrYUCUhpRSlGgVTegDaBZHQJ39LsjVx0d1fZQoaAZoCWgPQwiponiVtZhjQJSGlFKUaBVN6ANoFkdAngXRXGOuJXV9lChoBmgJaA9DCA0c0NIV/mRAlIaUUpRoFU3oA2gWR0CeCoLlFMIvdX2UKGgGaAloD0MIWivaHOf1YUCUhpRSlGgVTegDaBZHQJ4KzpD/lyR1fZQoaAZoCWgPQwg/VYUGYj1dQJSGlFKUaBVN6ANoFkdAng3vTPSlWXV9lChoBmgJaA9DCFex+E1hxV1AlIaUUpRoFU3oA2gWR0CeE/3W4EwGdX2UKGgGaAloD0MI6x7ZXLUhZ0CUhpRSlGgVTegDaBZHQJ4cjMKTjed1fZQoaAZoCWgPQwivXG+bKYtlQJSGlFKUaBVN6ANoFkdAniTBvegte3V9lChoBmgJaA9DCGgfK/jtz2NAlIaUUpRoFU3oA2gWR0CeJS9hZyMldX2UKGgGaAloD0MILXx9rUulZUCUhpRSlGgVTegDaBZHQJ4muycCo0h1fZQoaAZoCWgPQwjI0/IDV3VjQJSGlFKUaBVN6ANoFkdAnib4wIt16nV9lChoBmgJaA9DCAtgysAB42NAlIaUUpRoFU3oA2gWR0CeJwedTYNBdX2UKGgGaAloD0MI8wUtJOB6Z0CUhpRSlGgVTegDaBZHQJ48K6RQrMF1fZQoaAZoCWgPQwhiSbn7nHhhQJSGlFKUaBVN6ANoFkdAnj6Pn8sMAnV9lChoBmgJaA9DCASuK2aEDmBAlIaUUpRoFU3oA2gWR0CeQozdUKiPdX2UKGgGaAloD0MIAK5kx8Y/YkCUhpRSlGgVTegDaBZHQJ5LBsJpnHx1fZQoaAZoCWgPQwgTDOca5lllQJSGlFKUaBVN6ANoFkdAnksIV6/qPnV9lChoBmgJaA9DCMu+K4J/4WNAlIaUUpRoFU3oA2gWR0CeU+wnpjc3dX2UKGgGaAloD0MIKGIRw46ZY0CUhpRSlGgVTegDaBZHQJ5YiGpMpPR1fZQoaAZoCWgPQwg9RnnmZZtjQJSGlFKUaBVN6ANoFkdAnljWll9SdnV9lChoBmgJaA9DCGXCL/Vz4mJAlIaUUpRoFU3oA2gWR0CeW+e+Eh7mdX2UKGgGaAloD0MIzsZKzDPRZUCUhpRSlGgVTegDaBZHQJ5haNhmXgN1fZQoaAZoCWgPQwhaY9AJIbNlQJSGlFKUaBVN6ANoFkdAnmm6bKA8S3V9lChoBmgJaA9DCBLds67RUGJAlIaUUpRoFU3oA2gWR0CecfPLxI8RdX2UKGgGaAloD0MIhXe5iG9JZECUhpRSlGgVTegDaBZHQJ5yZLh73PB1fZQoaAZoCWgPQwgMWHIVC5BkQJSGlFKUaBVN6ANoFkdAnnP9YSxqwnV9lChoBmgJaA9DCJ0Rpb1BWWBAlIaUUpRoFU3oA2gWR0CedD6SDAaedX2UKGgGaAloD0MIXkccsoGoZECUhpRSlGgVTegDaBZHQJ50TuF6Avt1fZQoaAZoCWgPQwhcyvli79hjQJSGlFKUaBVN6ANoFkdAnnZMzl90BHV9lChoBmgJaA9DCE1p/S0BXGRAlIaUUpRoFU3oA2gWR0CejGrqMWGidX2UKGgGaAloD0MIERyXcdMIYkCUhpRSlGgVTegDaBZHQJ6Q7HT7VKB1fZQoaAZoCWgPQwiaJJaUu2RjQJSGlFKUaBVN6ANoFkdAnpqQkLQXynV9lChoBmgJaA9DCIXP1sFBgWZAlIaUUpRoFU3oA2gWR0CempJL/S6UdX2UKGgGaAloD0MIFRvzOmIKYkCUhpRSlGgVTegDaBZHQJ6jdqh11W91fZQoaAZoCWgPQwiGcqJdhTxsQJSGlFKUaBVNugFoFkdAnqPCT2WY4XV9lChoBmgJaA9DCGrbMAqCfy7AlIaUUpRoFUu+aBZHQJ6mAqhDgIh1fZQoaAZoCWgPQwhFLGLY4QJjQJSGlFKUaBVN6ANoFkdAnqgMr/bTMXV9lChoBmgJaA9DCAJIbeLkPmhAlIaUUpRoFU3oA2gWR0CeqFuvllshdX2UKGgGaAloD0MI4biMm5rhYECUhpRSlGgVTegDaBZHQJ6rd7PY4AF1fZQoaAZoCWgPQwhUAIxn0MVhQJSGlFKUaBVN6ANoFkdAnrDxUm2LHnV9lChoBmgJaA9DCKmkTkATsmdAlIaUUpRoFU3oA2gWR0CeuXgi/wiJdX2UKGgGaAloD0MIev8fJ8xKY0CUhpRSlGgVTegDaBZHQJ7CH2h7E511fZQoaAZoCWgPQwiFPljGBnJmQJSGlFKUaBVN6ANoFkdAnsKZE+gUUXV9lChoBmgJaA9DCP0v16KFp2NAlIaUUpRoFU3oA2gWR0CexF/LkjoqdX2UKGgGaAloD0MIQbrYtFJtXUCUhpRSlGgVTegDaBZHQJ7Eoy2x6fJ1fZQoaAZoCWgPQwhU4c/w5rhjQJSGlFKUaBVN6ANoFkdAnsS09pyp73V9lChoBmgJaA9DCNHLKJZbhWNAlIaUUpRoFU3oA2gWR0Ce3NTPjXFtdX2UKGgGaAloD0MIVJCfjdxKZkCUhpRSlGgVTegDaBZHQJ7hn1jAi3Z1fZQoaAZoCWgPQwhqGD4ipmZwQJSGlFKUaBVNewJoFkdAnuLEoa1kUnV9lChoBmgJaA9DCAlOfSA5WnBAlIaUUpRoFU3hAmgWR0Ce5HcQAdXDdX2UKGgGaAloD0MIK6VneolRPkCUhpRSlGgVS9loFkdAnuSzHGS6lXV9lChoBmgJaA9DCKcjgJtFNWVAlIaUUpRoFU3oA2gWR0Ce6rOfNA1OdX2UKGgGaAloD0MIDqK1os2ROECUhpRSlGgVS/5oFkdAnvLjvy9VWHV9lChoBmgJaA9DCIidKXTe7WNAlIaUUpRoFU3oA2gWR0Ce8zhSLqD9dX2UKGgGaAloD0MIinYVUn6AY0CUhpRSlGgVTegDaBZHQJ71vyZrpJR1fZQoaAZoCWgPQwh72uGvyYxeQJSGlFKUaBVN6ANoFkdAnvfjdDYywnV9lChoBmgJaA9DCE+uKZBZYmBAlIaUUpRoFU3oA2gWR0Ce+oLNOdoWdX2UKGgGaAloD0MIev1JfO4eSECUhpRSlGgVS+hoFkdAnv9LoOhCdHV9lChoBmgJaA9DCOcb0T1rjGNAlIaUUpRoFU3oA2gWR0Ce/0zXjENwdX2UKGgGaAloD0MIexNDcrITYUCUhpRSlGgVTegDaBZHQJ8GFqfvnbJ1fZQoaAZoCWgPQwhV3o5w2rljQJSGlFKUaBVN6ANoFkdAnwyzXnQpnnV9lChoBmgJaA9DCKeU10rorWVAlIaUUpRoFU3oA2gWR0CfDRISlFc6dX2UKGgGaAloD0MI5+EEptNjYkCUhpRSlGgVTegDaBZHQJ8OWfra/RF1fZQoaAZoCWgPQwgC1xUzwmNjQJSGlFKUaBVN6ANoFkdAnw6Olj3Eh3V9lChoBmgJaA9DCKmHaHQHrGdAlIaUUpRoFU3oA2gWR0CfEoVqesgddX2UKGgGaAloD0MIRtEDHwNqZkCUhpRSlGgVTegDaBZHQJ8p0D6nBLx1fZQoaAZoCWgPQwi4dqIkpK5hQJSGlFKUaBVN6ANoFkdAnyrClvZRK3V9lChoBmgJaA9DCDfBN02fzVBAlIaUUpRoFUvZaBZHQJ8sRKPGQ0Z1fZQoaAZoCWgPQwhMN4lB4IhiQJSGlFKUaBVN6ANoFkdAnyxTaK1og3V9lChoBmgJaA9DCKXXZmOlY2dAlIaUUpRoFU3oA2gWR0CfMXsRxtHhdX2UKGgGaAloD0MIs0C7Q4pNUkCUhpRSlGgVS9loFkdAnzb2MKkVOHV9lChoBmgJaA9DCH4BvXDnv2VAlIaUUpRoFU3oA2gWR0CfOKejmCAddX2UKGgGaAloD0MIqrpHNtcJZUCUhpRSlGgVTegDaBZHQJ87F7LMcIZ1fZQoaAZoCWgPQwjBN02fHQppQJSGlFKUaBVN6ANoFkdAnzz72YfGMnV9lChoBmgJaA9DCCUGgZXDfmVAlIaUUpRoFU3oA2gWR0CfP22Rq46PdX2UKGgGaAloD0MInBVRE/15bECUhpRSlGgVTbICaBZHQJ9DYRmK64F1fZQoaAZoCWgPQwiF0hdCTvNiQJSGlFKUaBVN6ANoFkdAn0RRxxT853V9lChoBmgJaA9DCK00KQXdXmRAlIaUUpRoFU3oA2gWR0CfRFMaCL/CdX2UKGgGaAloD0MIGjGzz2MUPUCUhpRSlGgVS+toFkdAn0g+6VdHD3V9lChoBmgJaA9DCCVbXU4JpGdAlIaUUpRoFU3oA2gWR0CfSqUQkHD8dX2UKGgGaAloD0MIRtJu9HHzcUCUhpRSlGgVTQcDaBZHQJ9QvSNOuaF1fZQoaAZoCWgPQwjCvTJvVSlpQJSGlFKUaBVN6ANoFkdAn1DnLRrrPnV9lChoBmgJaA9DCBRCB13CKF9AlIaUUpRoFU3oA2gWR0CfUULuhK15dX2UKGgGaAloD0MIWHA/4AERY0CUhpRSlGgVTegDaBZHQJ9XFkAggYB1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:524fd421efbafa4ad97fa335f7b35447e8a48ee60c949ecd6c2ad3f8009b4b1c
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6e2b0f44f63ee50b06e86f7b0a1675f335bb36ca38547ff1005ce4ea2e4341e
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (222 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 256.0279940486612, "std_reward": 30.45011165195262, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-22T14:38:07.135974"}