--- language: - hu tags: - fill-mask license: cc-by-nc-4.0 widget: - text: "Elmesélek egy történetet a nyelvtechnológiáról." --- # PULI BERT-Large For further details, see [our demo site](https://juniper.nytud.hu/demo/nlp). - Hungarian BERT large model (MegatronBERT) - Trained with Megatron-DeepSpeed [github](https://github.com/microsoft/Megatron-DeepSpeed) - Dataset: 36.3 billion words - Checkpoint: 150 000 steps ## Limitations - max_seq_length = 1024 ## Citation If you use this model, please cite the following paper: ``` @inproceedings {yang-gpt3, title = {Jönnek a nagyok! GPT-3, GPT-2 és BERT large nyelvmodellek magyar nyelvre}, booktitle = {XIX. Magyar Számítógépes Nyelvészeti Konferencia (MSZNY 2023)}, year = {2023}, publisher = {Szegedi Tudományegyetem}, address = {Szeged, Hungary}, author = {Yang, Zijian Győző and Dodé, Réka and Ferenczi, Gergő and Héja, Enikő and Kőrös, Ádám and Laki, László János and Ligeti-Nagy, Noémi and Jelencsik-Mátyus, Kinga and Vadász, Noémi and Váradi, Tamás}, pages = {0} } ``` ## Usage ```python from transformers import BertTokenizer, MegatronBertModel tokenizer = BertTokenizer.from_pretrained('NYTK/PULI-BERT-Large') model = MegatronBertModel.from_pretrained('NYTK/PULI-BERT-Large') text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ```