--- base_model: csebuetnlp/banglabert tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: banglabert-MLTC-BB1 results: [] --- # banglabert-MLTC-BB1 This model is a fine-tuned version of [csebuetnlp/banglabert](https://huggingface.co/csebuetnlp/banglabert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4011 - F1: 0.8602 - Roc Auc: 0.8579 - Accuracy: 0.5758 - Hamming Loss: 0.1420 - Jaccard Score: 0.7547 - Zero One Loss: 0.4242 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | Hamming Loss | Jaccard Score | Zero One Loss | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|:------------:|:-------------:|:-------------:| | 0.2462 | 1.0 | 49 | 0.3759 | 0.8582 | 0.8534 | 0.5758 | 0.1465 | 0.7516 | 0.4242 | | 0.2099 | 2.0 | 98 | 0.3534 | 0.8656 | 0.8650 | 0.5964 | 0.1350 | 0.7630 | 0.4036 | | 0.2067 | 3.0 | 147 | 0.3660 | 0.8613 | 0.8599 | 0.5861 | 0.1401 | 0.7564 | 0.4139 | | 0.168 | 4.0 | 196 | 0.3672 | 0.8582 | 0.8567 | 0.5835 | 0.1433 | 0.7517 | 0.4165 | | 0.1425 | 5.0 | 245 | 0.3745 | 0.8555 | 0.8547 | 0.5656 | 0.1452 | 0.7475 | 0.4344 | | 0.1545 | 6.0 | 294 | 0.3894 | 0.8544 | 0.8522 | 0.5578 | 0.1478 | 0.7459 | 0.4422 | | 0.1115 | 7.0 | 343 | 0.3995 | 0.8579 | 0.8560 | 0.5681 | 0.1440 | 0.7511 | 0.4319 | | 0.1158 | 8.0 | 392 | 0.4054 | 0.8580 | 0.8554 | 0.5681 | 0.1446 | 0.7514 | 0.4319 | | 0.1055 | 9.0 | 441 | 0.3996 | 0.8575 | 0.8560 | 0.5681 | 0.1440 | 0.7506 | 0.4319 | | 0.105 | 10.0 | 490 | 0.4011 | 0.8602 | 0.8579 | 0.5758 | 0.1420 | 0.7547 | 0.4242 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.1.2 - Datasets 2.19.1 - Tokenizers 0.19.1