--- license: mit base_model: ai4bharat/indic-bert tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: indic-bert-MLTC-BB1 results: [] --- # indic-bert-MLTC-BB1 This model is a fine-tuned version of [ai4bharat/indic-bert](https://huggingface.co/ai4bharat/indic-bert) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5041 - F1: 0.7518 - Roc Auc: 0.7539 - Accuracy: 0.3728 - Hamming Loss: 0.2461 - Jaccard Score: 0.6023 - Zero One Loss: 0.6272 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | Hamming Loss | Jaccard Score | Zero One Loss | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|:------------:|:-------------:|:-------------:| | 0.6264 | 1.0 | 49 | 0.6551 | 0.6188 | 0.6176 | 0.1028 | 0.3824 | 0.4481 | 0.8972 | | 0.6024 | 2.0 | 98 | 0.6163 | 0.6967 | 0.6442 | 0.3316 | 0.3554 | 0.5345 | 0.6684 | | 0.5574 | 3.0 | 147 | 0.5932 | 0.7081 | 0.6492 | 0.3548 | 0.3503 | 0.5481 | 0.6452 | | 0.5267 | 4.0 | 196 | 0.6041 | 0.7105 | 0.6512 | 0.3573 | 0.3483 | 0.5510 | 0.6427 | | 0.4988 | 5.0 | 245 | 0.5409 | 0.7215 | 0.6822 | 0.3573 | 0.3175 | 0.5644 | 0.6427 | | 0.4609 | 6.0 | 294 | 0.5189 | 0.7188 | 0.6880 | 0.3419 | 0.3117 | 0.5611 | 0.6581 | | 0.4214 | 7.0 | 343 | 0.5426 | 0.7423 | 0.7196 | 0.3676 | 0.2802 | 0.5902 | 0.6324 | | 0.426 | 8.0 | 392 | 0.5119 | 0.7478 | 0.7416 | 0.3702 | 0.2584 | 0.5972 | 0.6298 | | 0.4034 | 9.0 | 441 | 0.5065 | 0.7526 | 0.7506 | 0.3805 | 0.2494 | 0.6033 | 0.6195 | | 0.3974 | 10.0 | 490 | 0.5041 | 0.7518 | 0.7539 | 0.3728 | 0.2461 | 0.6023 | 0.6272 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.1.2 - Datasets 2.19.1 - Tokenizers 0.19.1