--- license: mit base_model: nlptown/bert-base-multilingual-uncased-sentiment tags: - generated_from_trainer datasets: - amazon_reviews_multi metrics: - accuracy - f1 model-index: - name: amazon-reviews-sentiment-bert-base-uncased-6000-samples results: - task: name: Text Classification type: text-classification dataset: name: amazon_reviews_multi type: amazon_reviews_multi config: en split: validation args: en metrics: - name: Accuracy type: accuracy value: 0.7678571428571429 - name: F1 type: f1 value: 0.7167992873886065 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # amazon-reviews-sentiment-bert-base-uncased-6000-samples This model is a fine-tuned version of [nlptown/bert-base-multilingual-uncased-sentiment](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.5890 - Accuracy: 0.7679 - F1: 0.7168 ## Predicted labels - LABEL_0: Negative review - LABEL_1: Neutral review - LABEL_2: Positive review ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 188 | 0.5745 | 0.7586 | 0.7149 | | No log | 2.0 | 376 | 0.5890 | 0.7679 | 0.7168 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.0 - Datasets 2.14.6.dev0 - Tokenizers 0.13.3