---
license: mit
base_model: nlptown/bert-base-multilingual-uncased-sentiment
tags:
- generated_from_trainer
datasets:
- amazon_reviews_multi
metrics:
- accuracy
- f1
model-index:
- name: amazon-reviews-sentiment-bert-base-uncased-6000-samples
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: amazon_reviews_multi
      type: amazon_reviews_multi
      config: en
      split: validation
      args: en
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.7678571428571429
    - name: F1
      type: f1
      value: 0.7167992873886065
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# amazon-reviews-sentiment-bert-base-uncased-6000-samples

This model is a fine-tuned version of [nlptown/bert-base-multilingual-uncased-sentiment](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment) on the amazon_reviews_multi dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5890
- Accuracy: 0.7679
- F1: 0.7168

## Predicted labels

- LABEL_0: Negative review
- LABEL_1: Neutral review
- LABEL_2: Positive review

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log        | 1.0   | 188  | 0.5745          | 0.7586   | 0.7149 |
| No log        | 2.0   | 376  | 0.5890          | 0.7679   | 0.7168 |


### Framework versions

- Transformers 4.33.2
- Pytorch 2.0.0
- Datasets 2.14.6.dev0
- Tokenizers 0.13.3