Upload train.py
Browse files
train.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from unsloth import FastLanguageModel
|
2 |
+
import torch
|
3 |
+
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
|
4 |
+
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
5 |
+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
|
6 |
+
|
7 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
8 |
+
model_name = "unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit",
|
9 |
+
max_seq_length = max_seq_length,
|
10 |
+
dtype = dtype,
|
11 |
+
load_in_4bit = load_in_4bit,
|
12 |
+
)
|
13 |
+
model = FastLanguageModel.get_peft_model(
|
14 |
+
model,
|
15 |
+
r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
|
16 |
+
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
|
17 |
+
"gate_proj", "up_proj", "down_proj",],
|
18 |
+
lora_alpha = 16,
|
19 |
+
lora_dropout = 0, # Supports any, but = 0 is optimized
|
20 |
+
bias = "none", # Supports any, but = "none" is optimized
|
21 |
+
# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
|
22 |
+
use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
|
23 |
+
random_state = 3407,
|
24 |
+
use_rslora = False, # We support rank stabilized LoRA
|
25 |
+
loftq_config = None, # And LoftQ
|
26 |
+
)
|
27 |
+
|
28 |
+
prompt_context = """Bạn là một tư vấn viên hữu ích về luật.
|
29 |
+
### Instruction and Input:
|
30 |
+
Dựa vào ngữ cảnh/tài liệu sau:
|
31 |
+
{}
|
32 |
+
Hãy trả lời câu hỏi: {}
|
33 |
+
|
34 |
+
### Câu trả lời:
|
35 |
+
{}
|
36 |
+
"""
|
37 |
+
|
38 |
+
prompt = """Bạn là một tư vấn viên hữu ích về luật.
|
39 |
+
### Instruction and Input:
|
40 |
+
Hãy trả lời câu hỏi: {}
|
41 |
+
{}
|
42 |
+
|
43 |
+
### Câu trả lời:
|
44 |
+
{}"""
|
45 |
+
|
46 |
+
EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN
|
47 |
+
def formatting_prompts_func(examples):
|
48 |
+
instructions = examples["context"]
|
49 |
+
inputs = examples["input"]
|
50 |
+
outputs = examples["output"]
|
51 |
+
texts = []
|
52 |
+
for instruction, input, output in zip(instructions, inputs, outputs):
|
53 |
+
# Must add EOS_TOKEN, otherwise your generation will go on forever!
|
54 |
+
if instructions:
|
55 |
+
text = prompt_context.format(instruction, input, output) + EOS_TOKEN
|
56 |
+
else:
|
57 |
+
text = prompt.format(input, output) + EOS_TOKEN
|
58 |
+
texts.append(text)
|
59 |
+
return { "text" : texts, }
|
60 |
+
|
61 |
+
|
62 |
+
from datasets import load_dataset
|
63 |
+
dataset = load_dataset("json", data_files="/root/unsloth/train_data.jsonl", split="train")
|
64 |
+
dataset = dataset.map(formatting_prompts_func, batched = True,)
|
65 |
+
|
66 |
+
|
67 |
+
from trl import SFTTrainer
|
68 |
+
from transformers import TrainingArguments, DataCollatorForSeq2Seq
|
69 |
+
from unsloth import is_bfloat16_supported
|
70 |
+
|
71 |
+
from trl import SFTTrainer
|
72 |
+
from transformers import TrainingArguments
|
73 |
+
from unsloth import is_bfloat16_supported
|
74 |
+
|
75 |
+
trainer = SFTTrainer(
|
76 |
+
model=model,
|
77 |
+
tokenizer=tokenizer,
|
78 |
+
train_dataset=dataset,
|
79 |
+
dataset_text_field="text",
|
80 |
+
max_seq_length=max_seq_length,
|
81 |
+
dataset_num_proc=16,
|
82 |
+
packing=False, # Can make training 5x faster for short sequences.
|
83 |
+
args=TrainingArguments(
|
84 |
+
per_device_train_batch_size=16,
|
85 |
+
gradient_accumulation_steps=4,
|
86 |
+
num_train_epochs=1, # Set this for 1 full training run.
|
87 |
+
learning_rate=2e-4,
|
88 |
+
fp16=not is_bfloat16_supported(),
|
89 |
+
bf16=is_bfloat16_supported(),
|
90 |
+
logging_steps=1,
|
91 |
+
optim="adamw_8bit",
|
92 |
+
weight_decay=0.01,
|
93 |
+
lr_scheduler_type="linear",
|
94 |
+
seed=3407,
|
95 |
+
output_dir="outputs",
|
96 |
+
report_to="none", # Use this for WandB, etc.
|
97 |
+
# Save every 1000 steps
|
98 |
+
save_steps=500,
|
99 |
+
save_total_limit=3, # Keep only the last 3 checkpoints
|
100 |
+
),
|
101 |
+
)
|
102 |
+
|
103 |
+
trainer_stats = trainer.train()
|
104 |
+
|
105 |
+
model.save_pretrained("lora_model") # Local saving
|
106 |
+
tokenizer.save_pretrained("lora_model")
|
107 |
+
|
108 |
+
model.save_pretrained_merged("model", tokenizer, save_method = "merged_16bit",)
|
109 |
+
model.save_pretrained_merged("model", tokenizer, save_method = "lora",)
|