File size: 13,205 Bytes
7d95c60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import os
import time
import json
import torch
import pandas as pd
import faiss
from datasets import load_dataset
from .model import SharedBiEncoder
from .util import get_tokenizer, query_trans, context_trans
from .preprocess import tokenise, preprocess_question
from pyvi.ViTokenizer import tokenize

class BiRetriever():
    def __init__(self, args, encoder=None, biencoder=None, save_type="dpr"):
        start = time.time()
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.args = args
        if self.args.new_data:
            self.train_file = "ttrain_all.csv"
            self.test_file = "ttest_all.csv"
            self.val_file = "tval_all.csv"
        else:
            self.train_file = "ttrain.csv"
            self.test_file = "ttest.csv"
            self.val_file = "tval.csv"
        self.save_type = save_type
        self.dpr_tokenizer = get_tokenizer(self.args.BE_checkpoint)
        if biencoder is not None:
            self.biencoder = biencoder
        elif encoder is not None:
            self.biencoder = SharedBiEncoder(model_checkpoint=self.args.BE_checkpoint,
                                       encoder=encoder,
                                       representation=self.args.BE_representation,
                                       fixed=self.args.bi_fixed)
        else:
            self.biencoder = SharedBiEncoder(model_checkpoint=self.args.biencoder_path,
                                            representation=self.args.BE_representation,
                                            fixed=self.args.bi_fixed)
            #self.biencoder.load_state_dict(torch.load(self.args.biencoder_path))
            
        self.biencoder.to(self.device)
        self.encoder = self.biencoder.get_model()
        self.corpus = load_dataset("csv", data_files=self.args.corpus_file, split = 'train')
        if self.args.index_path:
            self.corpus.load_faiss_index('embeddings', self.args.index_path)
        else:
            self.corpus = self.get_index()
        end = time.time()
        print(end - start)
        
    def get_index(self):
        self.encoder.to("cuda").eval()
        with torch.no_grad():
            corpus_with_embeddings = self.corpus.map(lambda example: {'embeddings': self.encoder.get_representation(self.dpr_tokenizer.encode_plus(context_trans(example["tokenized_text"], self.dpr_tokenizer),
                                                                                                                                                       padding='max_length',
                                                                                                                                                       truncation=True,
                                                                                                                                                       max_length=self.args.ctx_len,
                                                                                                                                                       return_tensors='pt')['input_ids'].to(self.device),
                                                                                                                        self.dpr_tokenizer.encode_plus(context_trans(example["tokenized_text"], self.dpr_tokenizer),
                                                                                                                                                       padding='max_length',
                                                                                                                                                       truncation=True,
                                                                                                                                                       max_length=self.args.ctx_len,
                                                                                                                                                       return_tensors='pt')['attention_mask'].to(self.device))[0].to('cpu').numpy()})
        corpus_with_embeddings.add_faiss_index(column='embeddings', metric_type=faiss.METRIC_INNER_PRODUCT)
        index_path = self.args.biencoder_path.split("/")[-1]
        index_path = "outputs/index/index_"+ self.save_type + ".faiss"
        corpus_with_embeddings.save_faiss_index('embeddings', index_path)
        return corpus_with_embeddings
    
    def retrieve(self, question, top_k=100, segmented = False):
        start = time.time()
        self.encoder.to(self.device).eval()
        
        if segmented:
            tokenized_question = query_trans(question, self.dpr_tokenizer)
        else:
             tokenized_question = query_trans(tokenise(preprocess_question(question, remove_end_phrase=False), tokenize), self.dpr_tokenizer)

        with torch.no_grad():
            Q = self.dpr_tokenizer.encode_plus(tokenized_question, padding='max_length', truncation=True, max_length=self.args.q_len, return_tensors='pt')
            question_embedding = self.encoder.get_representation(Q['input_ids'].to(self.device),
                                                                   Q['attention_mask'].to(self.device))[0].to('cpu').numpy()
            scores, retrieved_examples = self.corpus.get_nearest_examples('embeddings', question_embedding, k=top_k)
            retrieved_ids = retrieved_examples['id']   
        end = time.time()
        #print(end - start)
        return retrieved_ids, scores
    
    def test_on_data(self, top_k =[100], segmented = True, train= True):
        result = []  
        dtest = pd.read_csv(os.path.join(self.args.data_dir, self.test_file))
        dval = pd.read_csv(os.path.join(self.args.data_dir, self.val_file))
        if train:
            dtrain = pd.read_csv(os.path.join(self.args.data_dir, self.train_file))
            train_retrieved = self.retrieve_on_data(dtrain, name = 'train', top_k= max(top_k),segmented=segmented)
        test_retrieved = self.retrieve_on_data(dtest, name = 'test', top_k= max(top_k), segmented=segmented)
        val_retrieved = self.retrieve_on_data(dval, name = 'val', top_k= max(top_k),segmented=segmented)
        
        for k in top_k:
            rlt = {}
            strk = str(k)
            rlt[strk] = {}
            test_retrieved_k = [x[:k] for x in test_retrieved]
            val_retrieved_k = [x[:k] for x in val_retrieved]
            
            print("Testing hit scores with top_{}:".format(k))
            val_hit_acc, val_all_acc = self.calculate_score(dval, val_retrieved_k)
            rlt[strk]['val_hit'] = val_hit_acc
            rlt[strk]['val_all'] = val_all_acc
            print("\tVal hit acc: {:.4f}%".format(val_hit_acc*100))
            print("\tVal all acc: {:.4f}%".format(val_all_acc*100))
            test_hit_acc, test_all_acc = self.calculate_score(dtest, test_retrieved_k)
            rlt[strk]['test_hit'] = test_hit_acc
            rlt[strk]['test_all'] = test_all_acc
            print("\tTest hit acc: {:.4f}%".format(test_hit_acc*100))
            print("\tTest all acc: {:.4f}%".format(test_all_acc*100))
            result.append(rlt)
        #name = self.args.biencoder_path.split("/")
        save_file = "outputs/testdpr_"+ self.save_type + ".json" 
        with open(save_file, 'w') as f:
            json.dump(result, f, ensure_ascii = False, indent =4)
            
    def retrieve_with_result(self, df, name, top_k=[100], segmented=False):
        result = []
        retrieved = self.retrieve_on_data(df, name, top_k=max(top_k), segmented=segmented)
            
        for k in top_k:
            rlt = {}
            strk = str(k)
            rlt[strk] = {}
            retrieved_k = [x[:k] for x in retrieved]
            
            print("Testing hit scores with top_{}:".format(k))
            hit_acc, all_acc = self.calculate_score(df, retrieved_k)
            rlt[strk]['hit'] = hit_acc
            rlt[strk]['all'] = all_acc
            print("\tHit acc: {:.4f}%".format(hit_acc*100))
            print("\tAll acc: {:.4f}%".format(all_acc*100))
            result.append(rlt)     
              
    def retrieve_on_data(self, df, name, top_k = 100, segmented = False, saved=True):
        count = 0
        acc = 0
        retrieved_list = []
        #retrieved_sub_list = []
        if not segmented:
            tokenized_questions = []
            for i in range(len(df)):
                tokenized_question = tokenise(preprocess_question(df['question'][i], remove_end_phrase=False), tokenize)
                tokenized_questions.append(tokenized_question)
            df['tokenized_question'] = tokenized_questions
            
        for i in range(len(df)):
            tokenized_question = df['tokenized_question'][i]
            retrieved_ids, _ = self.retrieve(tokenized_question, top_k, segmented=True)
            retrieved_list.append(retrieved_ids)

        if saved:
            save_file = "outputs/" + self.save_type + "_" + name + "_retrieved.json" 
            with open(save_file, 'w') as f:
                json.dump(retrieved_list, f, ensure_ascii = False, indent =4)
        return retrieved_list
    
    def find_neg(self, df, name, no_negs=3, segmented=True):
        retrieved_list = self.retrieve_on_data(df, name, 100, segmented, saved=False)
        
        ttokenized_ques = df['tokenized_question'].tolist()
        tans_id = df['ans_id'].tolist()
        tnew_neg = []
        tbest_ans_id = df['best_ans_id'].tolist()
        
        nbest_ans_id = []
        
        for i in range(len(df)):
            retrieved_ids = retrieved_list[i]
            ans_idss = json.loads(tans_id[i])
            tbest_ans_idss = json.loads(tbest_ans_id[i])
            ans_ids = []
            nbest_ans_ids = []
            for j in range(len(ans_idss)):
                a_ids = ans_idss[j]
                tbest_a_id = tbest_ans_idss[j]
                ans_ids += a_ids
                found = True
                ij = 0
                while (found and ij < 100):
                    if retrieved_ids[ij] in a_ids:
                        nbest_ans_ids.append(retrieved_ids[ij]) 
                        found = False
                    ij += 1
                if found:
                    nbest_ans_ids.append(tbest_a_id)
                        
            new_neg_ids = [x for x in retrieved_ids if x not in ans_ids]# and x not in kept_neg_ids]
            new_neg_ids = new_neg_ids[:no_negs]
            nbest_ans_id.append(nbest_ans_ids)
            tnew_neg.append(new_neg_ids) 
            
        dn = pd.DataFrame()
        dn['tokenized_question'] = ttokenized_ques
        dn['ans_id'] = tans_id
        dn['best_ans_id'] = nbest_ans_id
        dn['neg_ids'] = tnew_neg
        
        dt = pd.DataFrame()
        dt['tokenized_question'] = ttokenized_ques
        dt['ans_id'] = tans_id
        dt['best_ans_id'] = tbest_ans_id
        dt['neg_ids'] = tnew_neg
        return dt, dn
    
    def increase_neg(self, no_negs=3, segmented=True):
        dtrain = pd.read_csv(os.path.join(self.args.data_dir, self.train_file))
        dval = pd.read_csv(os.path.join(self.args.data_dir, self.val_file))
        dtest = pd.read_csv(os.path.join(self.args.data_dir, self.test_file))
        
        dttrain, dntrain = self.find_neg(dtrain, "train", no_negs, segmented)
        dtval, dnval = self.find_neg(dval, "val", no_negs, segmented)
        dttest, dntest = self.find_neg(dtest, "test", no_negs, segmented)
        
        dttrain.to_csv("outputs/data/{}/old/{}".format(self.save_type, self.train_file), index=False)
        dtval.to_csv("outputs/data/{}/old/{}".format(self.save_type, self.val_file), index=False)
        dttest.to_csv("outputs/data/{}/old/{}".format(self.save_type, self.test_file), index=False)
        
        dntrain.to_csv("outputs/data/{}/new/{}".format(self.save_type, self.train_file), index=False)
        dnval.to_csv("outputs/data/{}/new/{}".format(self.save_type, self.val_file), index=False)
        dntest.to_csv("outputs/data/{}/new/{}".format(self.save_type, self.test_file), index=False)
    
    def calculate_score(self, df, retrieved_list):
        top_k = len(retrieved_list[0])
        all_count = 0
        hit_count = 0
        for i in range(len(df)):
            all_check = True
            hit_check = False
            retrieved_ids = retrieved_list[i]
            ans_ids = json.loads(df['ans_id'][i])
            for a_ids in ans_ids:
                com = [a_id for a_id in a_ids if a_id in retrieved_ids]
                if len(com) > 0:
                    hit_check = True
                else:
                    all_check = False
            
            if hit_check:
                hit_count += 1
            if all_check:
                all_count += 1
                
        all_acc = all_count/len(df)
        hit_acc = hit_count/len(df)
        return hit_acc, all_acc