NazmusAshrafi commited on
Commit
2c6d315
·
verified ·
1 Parent(s): 7927667

Add SetFit ABSA model

Browse files
Files changed (3) hide show
  1. README.md +1 -110
  2. config.json +1 -1
  3. tokenizer_config.json +7 -0
README.md CHANGED
@@ -8,37 +8,10 @@ tags:
8
  - generated_from_setfit_trainer
9
  metrics:
10
  - accuracy
11
- widget:
12
- - text: waiter:After sitting at the table with empty glasses for a 1/2 hour, we had
13
- to ask the busboys to get us drinks as our waiter was nowhere to be found.
14
- - text: presentation:The service was impeccible, the menu traditional but inventive
15
- and presentation for the mostpart excellent but the food itself came up short.
16
- - text: Friday night:Without reservations on a Friday night at 8:30 I was promptly
17
- seated and given top-notch recommendations from both the host and my waiter.
18
- - text: time:last time, the waiter told my roommate he'd have to charge her $5 for
19
- mushrooms as one of her omelette choices (never heard that at my other favorite
20
- brunch places.
21
- - text: waitstaff:And the waitstaff has very little knowledge of the food, they served
22
- me the wrong dish and no one could identify what it was that they gave me, someone
23
- said pork chop, someone said lamb, and then they insisted it should be fine since
24
- it was the same price.
25
  pipeline_tag: text-classification
26
  inference: false
27
  base_model: sentence-transformers/paraphrase-mpnet-base-v2
28
- model-index:
29
- - name: SetFit Aspect Model with sentence-transformers/paraphrase-mpnet-base-v2
30
- results:
31
- - task:
32
- type: text-classification
33
- name: Text Classification
34
- dataset:
35
- name: Unknown
36
- type: unknown
37
- split: test
38
- metrics:
39
- - type: accuracy
40
- value: 0.8051948051948052
41
- name: Accuracy
42
  ---
43
 
44
  # SetFit Aspect Model with sentence-transformers/paraphrase-mpnet-base-v2
@@ -77,19 +50,6 @@ This model was trained within the context of a larger system for ABSA, which loo
77
  - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
78
  - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
79
 
80
- ### Model Labels
81
- | Label | Examples |
82
- |:----------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
83
- | aspect | <ul><li>'decor:The decor is not special at all but their food and amazing prices make up for it.'</li><li>'food:The decor is not special at all but their food and amazing prices make up for it.'</li><li>'prices:The decor is not special at all but their food and amazing prices make up for it.'</li></ul> |
84
- | no aspect | <ul><li>'party:when tables opened up, the manager sat another party before us.'</li><li>"offerings:Though the menu includes some unorthodox offerings (a peanut butter roll, for instance), the classics are pure and great--we've never had better sushi anywhere, including Japan."</li><li>"instance:Though the menu includes some unorthodox offerings (a peanut butter roll, for instance), the classics are pure and great--we've never had better sushi anywhere, including Japan."</li></ul> |
85
-
86
- ## Evaluation
87
-
88
- ### Metrics
89
- | Label | Accuracy |
90
- |:--------|:---------|
91
- | **all** | 0.8052 |
92
-
93
  ## Uses
94
 
95
  ### Direct Use for Inference
@@ -140,75 +100,6 @@ preds = model("The food was great, but the venue is just way too busy.")
140
 
141
  ## Training Details
142
 
143
- ### Training Set Metrics
144
- | Training set | Min | Median | Max |
145
- |:-------------|:----|:--------|:----|
146
- | Word count | 7 | 29.7429 | 63 |
147
-
148
- | Label | Training Sample Count |
149
- |:----------|:----------------------|
150
- | no aspect | 115 |
151
- | aspect | 130 |
152
-
153
- ### Training Hyperparameters
154
- - batch_size: (16, 2)
155
- - num_epochs: (1, 16)
156
- - max_steps: -1
157
- - sampling_strategy: oversampling
158
- - body_learning_rate: (2e-05, 1e-05)
159
- - head_learning_rate: 0.01
160
- - loss: CosineSimilarityLoss
161
- - distance_metric: cosine_distance
162
- - margin: 0.25
163
- - end_to_end: False
164
- - use_amp: False
165
- - warmup_proportion: 0.1
166
- - seed: 42
167
- - eval_max_steps: -1
168
- - load_best_model_at_end: False
169
-
170
- ### Training Results
171
- | Epoch | Step | Training Loss | Validation Loss |
172
- |:------:|:----:|:-------------:|:---------------:|
173
- | 0.0005 | 1 | 0.2136 | - |
174
- | 0.0263 | 50 | 0.264 | - |
175
- | 0.0527 | 100 | 0.2717 | - |
176
- | 0.0790 | 150 | 0.2099 | - |
177
- | 0.1053 | 200 | 0.1357 | - |
178
- | 0.1316 | 250 | 0.1224 | - |
179
- | 0.1580 | 300 | 0.0305 | - |
180
- | 0.1843 | 350 | 0.0016 | - |
181
- | 0.2106 | 400 | 0.0015 | - |
182
- | 0.2370 | 450 | 0.0004 | - |
183
- | 0.2633 | 500 | 0.0006 | - |
184
- | 0.2896 | 550 | 0.0109 | - |
185
- | 0.3160 | 600 | 0.0002 | - |
186
- | 0.3423 | 650 | 0.0001 | - |
187
- | 0.3686 | 700 | 0.0001 | - |
188
- | 0.3949 | 750 | 0.0003 | - |
189
- | 0.4213 | 800 | 0.0001 | - |
190
- | 0.4476 | 850 | 0.0002 | - |
191
- | 0.4739 | 900 | 0.0001 | - |
192
- | 0.5003 | 950 | 0.0002 | - |
193
- | 0.5266 | 1000 | 0.0001 | - |
194
- | 0.5529 | 1050 | 0.0001 | - |
195
- | 0.5793 | 1100 | 0.0001 | - |
196
- | 0.6056 | 1150 | 0.0001 | - |
197
- | 0.6319 | 1200 | 0.0002 | - |
198
- | 0.6582 | 1250 | 0.0001 | - |
199
- | 0.6846 | 1300 | 0.0001 | - |
200
- | 0.7109 | 1350 | 0.0001 | - |
201
- | 0.7372 | 1400 | 0.0001 | - |
202
- | 0.7636 | 1450 | 0.0001 | - |
203
- | 0.7899 | 1500 | 0.0001 | - |
204
- | 0.8162 | 1550 | 0.0001 | - |
205
- | 0.8425 | 1600 | 0.0169 | - |
206
- | 0.8689 | 1650 | 0.0001 | - |
207
- | 0.8952 | 1700 | 0.0001 | - |
208
- | 0.9215 | 1750 | 0.0001 | - |
209
- | 0.9479 | 1800 | 0.0001 | - |
210
- | 0.9742 | 1850 | 0.0001 | - |
211
-
212
  ### Framework Versions
213
  - Python: 3.10.12
214
  - SetFit: 1.0.3
 
8
  - generated_from_setfit_trainer
9
  metrics:
10
  - accuracy
11
+ widget: []
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  pipeline_tag: text-classification
13
  inference: false
14
  base_model: sentence-transformers/paraphrase-mpnet-base-v2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  ---
16
 
17
  # SetFit Aspect Model with sentence-transformers/paraphrase-mpnet-base-v2
 
50
  - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
51
  - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
  ## Uses
54
 
55
  ### Direct Use for Inference
 
100
 
101
  ## Training Details
102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
  ### Framework Versions
104
  - Python: 3.10.12
105
  - SetFit: 1.0.3
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "sentence-transformers/paraphrase-mpnet-base-v2",
3
  "architectures": [
4
  "MPNetModel"
5
  ],
 
1
  {
2
+ "_name_or_path": "NazmusAshrafi/atsa-mams-ds-setfit-MiniLM-mpnet-absa-tesla-tweet-aspect",
3
  "architectures": [
4
  "MPNetModel"
5
  ],
tokenizer_config.json CHANGED
@@ -48,12 +48,19 @@
48
  "do_lower_case": true,
49
  "eos_token": "</s>",
50
  "mask_token": "<mask>",
 
51
  "model_max_length": 512,
52
  "never_split": null,
 
53
  "pad_token": "<pad>",
 
 
54
  "sep_token": "</s>",
 
55
  "strip_accents": null,
56
  "tokenize_chinese_chars": true,
57
  "tokenizer_class": "MPNetTokenizer",
 
 
58
  "unk_token": "[UNK]"
59
  }
 
48
  "do_lower_case": true,
49
  "eos_token": "</s>",
50
  "mask_token": "<mask>",
51
+ "max_length": 512,
52
  "model_max_length": 512,
53
  "never_split": null,
54
+ "pad_to_multiple_of": null,
55
  "pad_token": "<pad>",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
  "sep_token": "</s>",
59
+ "stride": 0,
60
  "strip_accents": null,
61
  "tokenize_chinese_chars": true,
62
  "tokenizer_class": "MPNetTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
  "unk_token": "[UNK]"
66
  }