NazmusAshrafi commited on
Commit
736d448
1 Parent(s): 3d4bee8

Add SetFit ABSA model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,227 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - absa
6
+ - sentence-transformers
7
+ - text-classification
8
+ - generated_from_setfit_trainer
9
+ metrics:
10
+ - accuracy
11
+ widget:
12
+ - text: ; got my car in about a:Well.. I added a new 🐎 to the stable! Special thanks
13
+ to Matt at the @Tesla Clarkston location who made my Model Y order & delivery
14
+ incredibly smooth.🙏 I'm super lucky & got my car in about a week of deciding
15
+ to go for it 😳 Video coming soon about that process & more! https://t.co/PrP91xMnKk
16
+ - text: '. But the price could be cheaper:C’mon @elonmusk! Australians are busting
17
+ to buy EVs & the best one is @Tesla imho. But the price could be cheaper,
18
+ if you built a #gigafactory in Australia. 70% of the lithium in the cars is #aussie
19
+ so why not set up a #gigafactorydownunder? All the talent and minerals are here!'
20
+ - text: 'generate more net profit from legacy auto:As with previous quarters, $TSLA
21
+ will generate more net profit from legacy auto regulatory credits sales this quarter
22
+ than legacy auto will make in gross profit by selling EVs.
23
+
24
+
25
+ This just keeps adding insult to injury.'
26
+ - text: on keeping this car for 10 years:@_brivnii @Tesla I plan on keeping this car
27
+ for 10 years total (so 6 more years at least). I don't feel the need to upgrade
28
+ to a newer model even if price is no issue. This one has been reliable, and I
29
+ got a good battery (no signs of degradation so far)
30
+ - text: "The driver’s car was a @Tesla:I took an @Uber home from the airport and my\
31
+ \ bill had a fuel surcharge on it because of the current price of gasoline. \n\
32
+ \nThe driver’s car was a @Tesla… \U0001F937"
33
+ pipeline_tag: text-classification
34
+ inference: false
35
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
36
+ model-index:
37
+ - name: SetFit Polarity Model with sentence-transformers/paraphrase-mpnet-base-v2
38
+ results:
39
+ - task:
40
+ type: text-classification
41
+ name: Text Classification
42
+ dataset:
43
+ name: Unknown
44
+ type: unknown
45
+ split: test
46
+ metrics:
47
+ - type: accuracy
48
+ value: 0.44
49
+ name: Accuracy
50
+ ---
51
+
52
+ # SetFit Polarity Model with sentence-transformers/paraphrase-mpnet-base-v2
53
+
54
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities.
55
+
56
+ The model has been trained using an efficient few-shot learning technique that involves:
57
+
58
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
59
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
60
+
61
+ This model was trained within the context of a larger system for ABSA, which looks like so:
62
+
63
+ 1. Use a spaCy model to select possible aspect span candidates.
64
+ 2. Use a SetFit model to filter these possible aspect span candidates.
65
+ 3. **Use this SetFit model to classify the filtered aspect span candidates.**
66
+
67
+ ## Model Details
68
+
69
+ ### Model Description
70
+ - **Model Type:** SetFit
71
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
72
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
73
+ - **spaCy Model:** en_core_web_lg
74
+ - **SetFitABSA Aspect Model:** [NazmusAshrafi/setfit-MiniLM-mpnet-absa-tesla-tweet-aspect](https://huggingface.co/NazmusAshrafi/setfit-MiniLM-mpnet-absa-tesla-tweet-aspect)
75
+ - **SetFitABSA Polarity Model:** [NazmusAshrafi/setfit-MiniLM-mpnet-absa-tesla-tweet-polarity](https://huggingface.co/NazmusAshrafi/setfit-MiniLM-mpnet-absa-tesla-tweet-polarity)
76
+ - **Maximum Sequence Length:** 512 tokens
77
+ - **Number of Classes:** 3 classes
78
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
79
+ <!-- - **Language:** Unknown -->
80
+ <!-- - **License:** Unknown -->
81
+
82
+ ### Model Sources
83
+
84
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
85
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
86
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
87
+
88
+ ### Model Labels
89
+ | Label | Examples |
90
+ |:---------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
91
+ | neutral | <ul><li>"i.e. just more profit for $TSLA:I'm pretty sure, all an EV tax incentive will do, is raise the price of Teslas, at least for the next few years.\n\ni.e. just more profit for $TSLA\nAs if demand wasn't abundant enough already."</li><li>"increase also increase profit and Tesla the:C'mon @SaraEisen you know as well as I do that the price increases in $TSLA vehicles is not related to any weakness in the stock today. It's purely macro today. Plus, price increase also increase profit and Tesla the only Auto maker that is making high margins on sales."</li><li>"when choosing a car. They just:The key thing people get wrong when thinking EV competition is bad for Tesla:\n\nVast majority of consumers aren't prioritizing the environment when choosing a car. They just want the best product &amp; technology, which Tesla offers and just happens to be an EV\n\n$TSLA https://t.co/w3cKqeJkQW"</li></ul> |
92
+ | negative | <ul><li>"is raise the price of Teslas,:I'm pretty sure, all an EV tax incentive will do, is raise the price of Teslas, at least for the next few years.\n\ni.e. just more profit for $TSLA\nAs if demand wasn't abundant enough already."</li><li>'"The price of batteries for:"The price of batteries for electric vehicles looks set to rise in 2022 after many years of sharp decline. The supplies of lithium and other raw materials fail to keep up with huge demand." $NIO $TSLA $XPEV $LI\n\nhttps://t.co/2CAJCxTC2C'</li><li>'. But the price could be cheaper:C’mon @elonmusk! Australians are busting to buy EVs &amp; the best one is @Tesla imho. But the price could be cheaper, if you built a #gigafactory in Australia. 70% of the lithium in the cars is #aussie so why not set up a #gigafactorydownunder? All the talent and minerals are here!'</li></ul> |
93
+ | positive | <ul><li>'a $30k car with $70k:John Hennessey gets a $TSLA Plaid. \nA retired OEM executive describes Tesla as a $30k car with $70k in batteries. \nThe perfect description of a Tesla https://t.co/m5J5m3AuMJ'</li><li>"want the best product &amp;:The key thing people get wrong when thinking EV competition is bad for Tesla:\n\nVast majority of consumers aren't prioritizing the environment when choosing a car. They just want the best product &amp; technology, which Tesla offers and just happens to be an EV\n\n$TSLA https://t.co/w3cKqeJkQW"</li><li>"the most important product on Earth;:Tesla's 4680 battery (and it's manufactuing process) will end up being the most important product on Earth; it's that important. It will enable massive scale &amp; cost reductions over time. It will enable faster charging times &amp; longer range EVs, both will drive adoption.\n\n$TSLA"</li></ul> |
94
+
95
+ ## Evaluation
96
+
97
+ ### Metrics
98
+ | Label | Accuracy |
99
+ |:--------|:---------|
100
+ | **all** | 0.44 |
101
+
102
+ ## Uses
103
+
104
+ ### Direct Use for Inference
105
+
106
+ First install the SetFit library:
107
+
108
+ ```bash
109
+ pip install setfit
110
+ ```
111
+
112
+ Then you can load this model and run inference.
113
+
114
+ ```python
115
+ from setfit import AbsaModel
116
+
117
+ # Download from the 🤗 Hub
118
+ model = AbsaModel.from_pretrained(
119
+ "NazmusAshrafi/setfit-MiniLM-mpnet-absa-tesla-tweet-aspect",
120
+ "NazmusAshrafi/setfit-MiniLM-mpnet-absa-tesla-tweet-polarity",
121
+ )
122
+ # Run inference
123
+ preds = model("The food was great, but the venue is just way too busy.")
124
+ ```
125
+
126
+ <!--
127
+ ### Downstream Use
128
+
129
+ *List how someone could finetune this model on their own dataset.*
130
+ -->
131
+
132
+ <!--
133
+ ### Out-of-Scope Use
134
+
135
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
136
+ -->
137
+
138
+ <!--
139
+ ## Bias, Risks and Limitations
140
+
141
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
142
+ -->
143
+
144
+ <!--
145
+ ### Recommendations
146
+
147
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
148
+ -->
149
+
150
+ ## Training Details
151
+
152
+ ### Training Set Metrics
153
+ | Training set | Min | Median | Max |
154
+ |:-------------|:----|:--------|:----|
155
+ | Word count | 26 | 46.2121 | 61 |
156
+
157
+ | Label | Training Sample Count |
158
+ |:---------|:----------------------|
159
+ | negative | 11 |
160
+ | neutral | 12 |
161
+ | positive | 10 |
162
+
163
+ ### Training Hyperparameters
164
+ - batch_size: (16, 2)
165
+ - num_epochs: (1, 16)
166
+ - max_steps: -1
167
+ - sampling_strategy: oversampling
168
+ - body_learning_rate: (2e-05, 1e-05)
169
+ - head_learning_rate: 0.01
170
+ - loss: CosineSimilarityLoss
171
+ - distance_metric: cosine_distance
172
+ - margin: 0.25
173
+ - end_to_end: False
174
+ - use_amp: False
175
+ - warmup_proportion: 0.1
176
+ - seed: 42
177
+ - eval_max_steps: -1
178
+ - load_best_model_at_end: False
179
+
180
+ ### Training Results
181
+ | Epoch | Step | Training Loss | Validation Loss |
182
+ |:------:|:----:|:-------------:|:---------------:|
183
+ | 0.0217 | 1 | 0.186 | - |
184
+
185
+ ### Framework Versions
186
+ - Python: 3.10.12
187
+ - SetFit: 1.0.3
188
+ - Sentence Transformers: 2.2.2
189
+ - spaCy: 3.6.1
190
+ - Transformers: 4.35.2
191
+ - PyTorch: 2.1.0+cu121
192
+ - Datasets: 2.16.1
193
+ - Tokenizers: 0.15.1
194
+
195
+ ## Citation
196
+
197
+ ### BibTeX
198
+ ```bibtex
199
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
200
+ doi = {10.48550/ARXIV.2209.11055},
201
+ url = {https://arxiv.org/abs/2209.11055},
202
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
203
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
204
+ title = {Efficient Few-Shot Learning Without Prompts},
205
+ publisher = {arXiv},
206
+ year = {2022},
207
+ copyright = {Creative Commons Attribution 4.0 International}
208
+ }
209
+ ```
210
+
211
+ <!--
212
+ ## Glossary
213
+
214
+ *Clearly define terms in order to be accessible across audiences.*
215
+ -->
216
+
217
+ <!--
218
+ ## Model Card Authors
219
+
220
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
221
+ -->
222
+
223
+ <!--
224
+ ## Model Card Contact
225
+
226
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
227
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/.cache/torch/sentence_transformers/sentence-transformers_paraphrase-mpnet-base-v2/",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.35.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "span_context": 3,
3
+ "labels": [
4
+ "negative",
5
+ "neutral",
6
+ "positive"
7
+ ],
8
+ "normalize_embeddings": false,
9
+ "spacy_model": "en_core_web_lg"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:390a45f052406fd380e897b080d5d9402cd41bc89bb25e2b0d713173068283a3
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57f7559505d036796f86fde2ba1d5b8a806ba15fea75dbec5f779e7b9cd2d36d
3
+ size 19375
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "MPNetTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff