{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb2b7addc40>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679781953460664530, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABbzfj5M+bM+uDX9Pj8JUT5dA5s/wY7oPkI0vD6hVpE+n3sUPyeBtz7Lb0Y+ZkILvrSl9z34Nbc/Yycgv8P9BD8EJ1Y/9+0KQGHaSr69eaS+c2FoPmRX+j4uvxk+Uwk7PpE7i789eQY/jyoCP8kDfj/jyDk/0HAcv1e7mj7PWZc/DdcrQNlTmL+psQU/qGwJv+Om9T4ly3I9p0v6PbYcw74wQ+I/J3iUPoYv6z3+8gZAqcSWP3zCTL+19Vi+V8vyPvC5kz8WSpm/LCacP9XCrj2RO4u/PXkGP48qAj/JA34/edpMPy7fNb+wIXk+CJd/P0/EVEDNBpK/RkWyP1WYnb+xzxM/u+bjve0yPT9Hp+Q/x/baP0d+Lb+MK9M+epoov+9Biz/nkkO/7LVDP7IVoj9jql6+dQaSv4m3sL37OifAkTuLvz15Bj+PKgI/FwCBv3epVL+3qIE/82N8PiOERT8e46k+UYb9v1NUr77wKpA/ZYiMPp5BST/4nHq/4hv8PuSgAr0MijI9c44wPjl0hT9YhJU/OIsrvzCMQr4qJ9I+HMf7vswYjD+kcqG+aPKFv5E7i789eQY/Vr37v8kDfj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABxxR22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACArj5SPQAAAABENOu/AAAAAAXa3z0AAAAANmMAQAAAAADLDAy9AAAAACHI7T8AAAAAlhMFPgAAAADyIfO/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP5CCNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgO05Qr0AAAAA2IjqvwAAAAC1Lio9AAAAANww5D8AAAAAXj2RvQAAAABezt8/AAAAAJ9A27wAAAAASI7vvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALoeoDUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDzhSu8AAAAABJJ+78AAAAAK5SLPQAAAACYO9o/AAAAAFrV+bwAAAAApEvjPwAAAADv8IW7AAAAABTP2b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADGrk81AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAR9IiOwAAAAAwYvW/AAAAAIpGQL0AAAAAntXjPwAAAACJ8LU9AAAAAIyb4D8AAAAA+ZtkOgAAAADnDADAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJrDjHYHxBqMAWyUTegDjAF0lEdAsNlrmMfignV9lChoBkdAlok8neBQN2gHTegDaAhHQLDaQWfbsWx1fZQoaAZHQJ1Yu2gFotdoB03oA2gIR0Cw3spWBBiTdX2UKGgGR0CYBrU21lXjaAdN6ANoCEdAsN9rhGYrrnV9lChoBkdAn6o54B3iaWgHTegDaAhHQLDhBfvnbIt1fZQoaAZHQJppDgIhQnBoB03oA2gIR0Cw4dO3H7xedX2UKGgGR0CYiAhOP/70aAdN6ANoCEdAsOg/MRpUP3V9lChoBkdAlxzI4MnZ02gHTegDaAhHQLDpH3DNyHV1fZQoaAZHQJ74JCv5gw5oB03oA2gIR0Cw6rIN/e+FdX2UKGgGR0CcGYMXrMTwaAdN6ANoCEdAsOt+6asp5XV9lChoBkdAn1MX58BuGmgHTegDaAhHQLDwOwNb1RN1fZQoaAZHQKD0sPGyX2NoB03oA2gIR0Cw8NoYm9g4dX2UKGgGR0Cgv0eb/ffoaAdN6ANoCEdAsPJq7OE/S3V9lChoBkdAoBKEtoSL62gHTegDaAhHQLDzYN4JNTN1fZQoaAZHQKC5UGorFwVoB03oA2gIR0Cw+dSQHRkVdX2UKGgGR0CeaHCzTnaGaAdN6ANoCEdAsPp4D8tPHnV9lChoBkdAnRq0QGwA2mgHTegDaAhHQLD8FJQ+EAZ1fZQoaAZHQJolUNqgyuZoB03oA2gIR0Cw/Oftx+8XdX2UKGgGR0Cdas43FUADaAdN6ANoCEdAsQGBlqagEnV9lChoBkdAn/T0SmIj4mgHTegDaAhHQLECHhIvrW11fZQoaAZHQJbtGYG+sYFoB03oA2gIR0CxBBQE2YOUdX2UKGgGR0CbJ7A5Jbt7aAdN6ANoCEdAsQUx9hJAdHV9lChoBkdAoBXIUcn3L2gHTegDaAhHQLELHQnx8Up1fZQoaAZHQJtVL1vl2eRoB03oA2gIR0CxC791EE1VdX2UKGgGR0CdbQXfIjnnaAdN6ANoCEdAsQ1ZjVhCt3V9lChoBkdAoGEvm7rcCmgHTegDaAhHQLEORlo11nx1fZQoaAZHQJWRfcGkep5oB03oA2gIR0CxEvBsImgKdX2UKGgGR0CbtzEtuk1uaAdN6ANoCEdAsRPME5hjOXV9lChoBkdAnGU39WIXTGgHTegDaAhHQLEWMOIInjR1fZQoaAZHQJ97NPVNHpdoB03oA2gIR0CxF2zz3AVPdX2UKGgGR0CVhj0aqCHzaAdN6ANoCEdAsRyfG6wt8XV9lChoBkdAn2HNPpIMB2gHTegDaAhHQLEdQ3/Pw/h1fZQoaAZHQJ2d8vHtF8ZoB03oA2gIR0CxHuW78Nx3dX2UKGgGR0CfD85zHS4OaAdN6ANoCEdAsR+6R6nivXV9lChoBkdAnW4U/bCaZ2gHTegDaAhHQLEk9S00FbF1fZQoaAZHQJ9S5un/DLtoB03oA2gIR0CxJeR95QgtdX2UKGgGR0CcrLxEfDDTaAdN6ANoCEdAsShqKGcnV3V9lChoBkdAnL7a0x/NJWgHTegDaAhHQLEpcIEr5Ip1fZQoaAZHQJvg8kv9LpRoB03oA2gIR0CxLiMYht+DdX2UKGgGR0CfRCFXq7iAaAdN6ANoCEdAsS7BL7Gec3V9lChoBkdAnzALbL2YfGgHTegDaAhHQLEwWvMr3Cd1fZQoaAZHQKA64THKfWdoB03oA2gIR0CxMSWt6ol2dX2UKGgGR0CgQPyGi5/caAdN6ANoCEdAsTcJpdrwfHV9lChoBkdAnyrbE1l5GGgHTegDaAhHQLE4CE2YOUd1fZQoaAZHQJ49O6+WWyFoB03oA2gIR0CxOf5qIrOJdX2UKGgGR0Cf589Ujs2OaAdN6ANoCEdAsTrHPa+N+HV9lChoBkdAoJH48uBczWgHTegDaAhHQLE/ZLuQZGd1fZQoaAZHQKBCu4GUwBZoB03oA2gIR0CxQAF/YraudX2UKGgGR0CeSHnvlU6xaAdN6ANoCEdAsUGUrc0tRXV9lChoBkdAn5lAJXyRS2gHTegDaAhHQLFCZALRa5h1fZQoaAZHQKC8wNFSbYtoB03oA2gIR0CxSOgSzw+ddX2UKGgGR0CdEvDwH7gsaAdN6ANoCEdAsUmWV0Lc9HV9lChoBkdAn2/ZEc81XWgHTegDaAhHQLFLNsoUi6h1fZQoaAZHQJ/pN8v24/hoB03oA2gIR0CxTAc1baAXdX2UKGgGR0CfiCMqSX+maAdN6ANoCEdAsVCUow22onV9lChoBkdAnhuvuTibUmgHTegDaAhHQLFRN3A2ycF1fZQoaAZHQKBI9EG7jDNoB03oA2gIR0CxUsi/wiJPdX2UKGgGR0CWE4srupjuaAdN6ANoCEdAsVPK24NI9XV9lChoBkdAn3bGSEDhcmgHTegDaAhHQLFaJxCpm291fZQoaAZHQKBF675Ec81oB03oA2gIR0CxWsSIpH7QdX2UKGgGR0CflwBZIQOGaAdN6ANoCEdAsVxY+GGmDXV9lChoBkdAn6pUbtJFs2gHTegDaAhHQLFdH101ZT11fZQoaAZHQJ97N2jfvWpoB03oA2gIR0CxYboH5aePdX2UKGgGR0Cf+j6kZaV2aAdN6ANoCEdAsWJc3HaN/HV9lChoBkdAnyOgD/2kBWgHTegDaAhHQLFkTswco6V1fZQoaAZHQKA1lBFd9lVoB03oA2gIR0CxZXINEw36dX2UKGgGR0CgiylFlTWHaAdN6ANoCEdAsWtRuHerMnV9lChoBkdAn63eby6MBWgHTegDaAhHQLFr86P8yet1fZQoaAZHQJ7ANrO7g89oB03oA2gIR0CxbZcwtapxdX2UKGgGR0CgGkL9deIEaAdN6ANoCEdAsW5mo5xR23V9lChoBkdAoHGSY/mknGgHTegDaAhHQLFzBIQOFxp1fZQoaAZHQJ14rmMfigloB03oA2gIR0Cxc9UlE7W/dX2UKGgGR0CfW0AfMfRvaAdN6ANoCEdAsXYn4N7SiXV9lChoBkdAnwL6xLTQV2gHTegDaAhHQLF3ZrO7g891fZQoaAZHQJ4Zmo0hvBJoB03oA2gIR0CxfLo2fkFOdX2UKGgGR0CfGYIYWLxaaAdN6ANoCEdAsX1czxgAqHV9lChoBkdAnk2kpZwGW2gHTegDaAhHQLF+94jrzGx1fZQoaAZHQJ7XT58BuGdoB03oA2gIR0Cxf8jURWcSdX2UKGgGR0CgHbn446wMaAdN6ANoCEdAsYTqOIZZS3V9lChoBkdAmuphU70WdmgHTegDaAhHQLGF1HS4OMF1fZQoaAZHQKAH2HxjJ+5oB03oA2gIR0CxiFN3W4EwdX2UKGgGR0CgQLHRTjvNaAdN6ANoCEdAsYl/xvvSdHV9lChoBkdAnhoRUR3/xWgHTegDaAhHQLGOHr+o99t1fZQoaAZHQKAoqtGus91oB03oA2gIR0Cxjr5BHCoCdX2UKGgGR0CgdowBHTZyaAdN6ANoCEdAsZBZ4+r2g3V9lChoBkdAn3yzh1klNWgHTegDaAhHQLGRJdXDFZR1fZQoaAZHQKCulKyOaORoB03oA2gIR0CxlsRrvb48dX2UKGgGR0CgKakRaouPaAdN6ANoCEdAsZe7ag261HV9lChoBkdAnolK0pmVaGgHTegDaAhHQLGZ70ZWJad1fZQoaAZHQJ+UZSNwR5FoB03oA2gIR0CxmrgE+xGEdX2UKGgGR0CcTHM+eOGTaAdN6ANoCEdAsZ9Mg4ffXXV9lChoBkdAoFhpd8iOemgHTegDaAhHQLGf7mBvrGB1fZQoaAZHQJ2wZOoHcDdoB03oA2gIR0CxoZHy7PIGdX2UKGgGR0CfKKJL/S6UaAdN6ANoCEdAsaJn0rbxmXV9lChoBkdAmKhjb349HWgHTegDaAhHQLGo1/ub7TF1fZQoaAZHQJ89j1dxAB1oB03oA2gIR0Cxqa9EgGKRdX2UKGgGR0CdSIC8OCoTaAdN6ANoCEdAsatI11nuiXV9lChoBkdAnolt0NjLCGgHTegDaAhHQLGsGFZPl+51fZQoaAZHQJ1fhJd0JWxoB03oA2gIR0CxsK6E384xdX2UKGgGR0Cdh8LvTgEVaAdN6ANoCEdAsbFMkmhM8HVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62718, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}