File size: 9,453 Bytes
0ed8b17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
#!/bin/bash
set -e

# Languages to train on
#LANGUAGES_WIKIPEDIA=( "es" "af" "ar" "arz" "as" "bn" "fr" "sw" "eu" "ca" "zh" "en" "hi" "ur" "id" "pt" "vi" "gu" "kn" "ml" "mr" "ta" "te" "yo" )
#LANGUAGES_OSCAR=( "es" "af" "ar" "arz" "as" "bn" "fr" "sw" "eu" "ca" "zh" "en" "hi" "ur" "id" "pt" "vi" "gu" "kn" "ml" "mr" "te" )
LANGUAGES_WIKIPEDIA=( "es" "no" "nn" "is" "da" "en" "fr" "de" "sv" "no-da-en-sv-nn-is" "no-nn" )
LANGUAGES_OSCAR=( "es" "no" "nn" "is" "da" "en" "fr" "de" "sv" "no-da-en-sv-nn-is" "no-nn" )
MODEL_TYPES=("bpe" "unigram")

NDOC_FOR_LM=1000000
VOCAB_SIZES=(16000 32000 64000)  # 65536
SMALL_VOCAB_SIZE=16000
EXTRA_IDS=100

# Normalization parameters
SKIP_KENLM=True
REMOVE_ACCENTS=False
LOWER_CASE=False
NORMALIZE_NUMBERS=True
NORMALIZE_PUNCT=1

# OSCAR
NDOC_FOR_LM_OSCAR=1000000


train_language_and_dataset () {
    local lang=$1
    local dataset=$2
    local vocab_size=$3
    local vocab_ndoc=$4
    local model_type=$5
    local model_extra_ids=""
    local extra_ids=`python -c "print('--user_defined_symbols='+','.join([f'<extra_id_{i}>' for i in range($EXTRA_IDS)]))"`
    if [ "$EXTRA_IDS" = 0 ]; then
        model_extra_ids=""
    else
        model_extra_ids=".${EXTRA_IDS}extra"
    fi
    if [[ "$lang" == *"-"* ]]; then
        echo "Set of languages: ${lang}"
        for sublang in $(echo $lang | tr "-" "\n")
        do
            train_language_and_dataset "$sublang" "$dataset" "$vocab_size" "$vocab_ndoc" "$model_type"
        done
        if [ -f "data/${dataset}/cirrus/gz/${lang}.opening.txt" ]; then
           echo "${dataset} openings were alerady extracted for ${lang}"
        else
            touch "data/${dataset}/cirrus/gz/${lang}.json.gz"
            touch "data/${dataset}/cirrus/gz/${lang}.opening.tmp"
            echo "Combining and shuffling languages: ${lang}"
            for sublang in $(echo $lang | tr "-" "\n")
            do
                cat "data/${dataset}/cirrus/gz/${sublang}.opening.txt" >> "data/${dataset}/cirrus/gz/${lang}.opening.tmp"
            done
            shuf "data/${dataset}/cirrus/gz/${lang}.opening.tmp" -o "data/${dataset}/cirrus/gz/${lang}.opening.txt"
            rm "data/${dataset}/cirrus/gz/${lang}.opening.tmp"
        fi
    fi

    if [ "$dataset" = "wikipedia" ]; then
        # 1 Download Wikipedia cirrus
        if [ -f "data/${dataset}/cirrus/gz/${lang}.json.gz" ]; then
            echo "${lang} Wikipedia cirrus was already downloaded."
        else
            echo "Downloading ${lang}"
            mkdir -p "data/${dataset}/cirrus/gz/"
            python cc_net/get_wiki_cirrus.py dl --lang "${lang}" --output_dir "data/${dataset}/cirrus/gz" --date 20220418
            echo "Downloaded Wikipedia cirrus for ${lang}"
        fi

        # 2 Extract opening text of each article
        if [ -f "data/${dataset}/cirrus/gz/${lang}.opening.txt" ]; then
            echo "Wikipedia openings were already extracted for ${lang}"
        else
            echo "Extracting ${lang}"
            python cc_net/get_wiki_cirrus.py opening \
                --n_docs ${NDOC_FOR_LM} \
                --file "data/${dataset}/cirrus/gz/${lang}.json.gz" \
                --output "data/${dataset}/cirrus/gz/${lang}.opening.txt" \
                --accent ${REMOVE_ACCENTS} \
                --case ${LOWER_CASE} \
                --numbers ${NORMALIZE_NUMBERS} \
                --punct ${NORMALIZE_PUNCT}
        fi
    else
        # 1 & 2 Download and preprocess dataset from HF hub
        if [ -f "data/${dataset}/cirrus/gz/${lang}.opening.txt" ]; then
            echo "OSCAR openings were already extracted for ${lang}"
        else
            echo "Downloading OSCAR ${lang}"
            mkdir -p "data/${dataset}/cirrus/gz/"
            python cc_net/get_hf_dataset.py dl \
                --dataset "${dataset}" \
                --output_file "data/${dataset}/cirrus/gz/${lang}.opening.txt" \
                --name "unshuffled_deduplicated_${lang}" \
                --split "train" \
                --max_docs $NDOC_FOR_LM_OSCAR
        fi
    fi
    local model_name="${lang}_${vocab_size}_${model_type}${model_extra_ids}"
    # 3 Train sentence piece tokenizer
    if [ -f "data/${dataset}/lm_sp/${model_name}.sp.model" ]; then
        echo "Sentence piece tokenizer was already trained for ${model_name}"
    else
        echo "Training sentence piece tokenizer for ${lang}_${vocab_size}_${model_type}"
        mkdir -p "data/${dataset}/lm_sp"
        ./bin/spm_train --input="data/${dataset}/cirrus/gz/${lang}.opening.txt" \
            --vocab_size=${vocab_size} --hard_vocab_limit \
            --character_coverage=1.0 \
            --model_type=${model_type} \
            --bos_id=-1 --eos_id=1 --unk_id=2 --pad_id=0 \
            --input_sentence_size=${vocab_ndoc} --shuffle_input_sentence=true \
            --model_prefix="data/${dataset}/lm_sp/${model_name}.sp" ${extra_ids} \
        || echo "WARNING: Corpus is too small, will train smaller model" #&& \
        #./bin/spm_train --input="data/${dataset}/cirrus/gz/${lang}.opening.txt" \
        #    --vocab_size=${SMALL_VOCAB_SIZE} \
        #    --character_coverage=1.0 \
        #    --model_type=${model_type} \
        #    --bos_id=-1 --eos_id=1 --unk_id=2 --pad_id=0 \
        #    --model_prefix="data/${dataset}/lm_sp/${lang}_${vocab_size}.sp"

        echo "Trained SentencePiece model with $(wc -l data/"${dataset}"/lm_sp/"${lang}"_"${vocab_size}"_"${model_type}${model_extra_ids}".sp.vocab) pieces"
    fi

    if [ "$SKIP_KENLM" = "False" ]; then

      # 4 Tokenize openings dataset
      if [ -f "data/${dataset}/cirrus/sp/${lang}.opening.txt" ]; then
          echo "Openings dataset already tokenized for ${model_name}"
      else
          mkdir -p "data/${dataset}/cirrus/sp"
          echo "Tokenizing openings dataset for ${model_name}"
          ./bin/spm_encode \
              --model="data/${dataset}/lm_sp/${model_name}.sp.model" \
              --output_format=piece \
              "data/${dataset}/cirrus/gz/${lang}.opening.txt" > "data/${dataset}/cirrus/sp/${lang}.opening.txt"
          echo "Tokenized openings dataset for ${model_name}"
      fi

      # 5 Train KenLM model on tokenized dataset
      if [ -f "data/${dataset}/lm_sp/${model_name}.arpa" ] || [ -f "data/${dataset}/lm_sp/${model_name}.arpa.bin" ]; then
          echo "KenLM model already trained for ${model_name}"
      else
          echo "Training KenLM model for ${model_name}"
          mkdir -p tmp
          ./bin/lmplz -o 5 -S 8G -T tmp --vocab_estimate ${vocab_size}  --discount_fallback \
              < "data/${dataset}/cirrus/sp/${lang}.opening.txt" > "data/${dataset}/lm_sp/${model_name}.arpa"
          echo "Trained KenLM model for ${model_name}"
      fi
      if [ -f "data/${dataset}/lm_sp/${model_name}_untokenized.arpa" ] ; then
          echo "KenLM model already trained for ${model_name}_untokenized"
      else
          echo "Training KenLM model for ${model_name}_untokenized"
          mkdir -p tmp
          ./bin/lmplz -o 5 -S 8G -T tmp --vocab_estimate ${vocab_size}  --discount_fallback --skip_symbols \
              < "data/${dataset}/cirrus/gz/${lang}.opening.txt" > "data/${dataset}/lm_sp/${model_name}_untokenized.arpa"
          echo "Trained KenLM model for ${model_name}_untokenized"
      fi


      # 6 Convert KenLM model to binary
      if [ -f "data/${dataset}/lm_sp/${lang}_${vocab_size}_${model_type}${model_extra_ids}.arpa.bin" ]; then
          echo "KenLM model already converted to binary for ${lang}_${vocab_size}_${model_type}${model_extra_ids}"
      else
          echo "Converting KenLM model to binary for ${lang}_${vocab_size}_${model_type}${model_extra_ids}"
          ./bin/build_binary "data/${dataset}/lm_sp/${lang}_${vocab_size}_${model_type}${model_extra_ids}.arpa" "data/${dataset}/lm_sp/${lang}_${vocab_size}_${model_type}${model_extra_ids}.arpa.bin"
          echo "Converted KenLM model to binary for ${lang}_${vocab_size}_${model_type}${model_extra_ids}"
          rm "data/${dataset}/lm_sp/${lang}_${vocab_size}_${model_type}${model_extra_ids}.arpa"
      fi
      if [ -f "data/${dataset}/lm_sp/${lang}_${vocab_size}_${model_type}${model_extra_ids}_untokenized.arpa.bin" ]; then
          echo "KenLM model already converted to binary for ${lang}_${vocab_size}_${model_type}${model_extra_ids}_untokenized"
      else
          echo "Converting KenLM model to binary for ${lang}_${vocab_size}_${model_type}${model_extra_ids}_untokenized"
          ./bin/build_binary "data/${dataset}/lm_sp/${lang}_${vocab_size}_${model_type}${model_extra_ids}_untokenized.arpa" "data/${dataset}/lm_sp/${lang}_${vocab_size}_${model_type}${model_extra_ids}_untokenized.arpa.bin"
          echo "Converted KenLM model to binary for ${lang}_${vocab_size}_${model_type}${model_extra_ids}_untokenized"
          # rm "data/${dataset}/lm_sp/${lang}_${vocab_size}_${model_type}_untokenized.arpa"
      fi

    fi
}

for model_type in "${MODEL_TYPES[@]}"
do
  for vocab_size in "${VOCAB_SIZES[@]}"
  do
    echo -e "\n--------------------\nVocab: ${vocab_size}. Model: ${model_type}\n--------------------\n"
    for lang in "${LANGUAGES_WIKIPEDIA[@]}"
    do
        train_language_and_dataset "$lang" wikipedia "$vocab_size" "$NDOC_FOR_LM" "$model_type"
    done

    for lang in "${LANGUAGES_OSCAR[@]}"
    do
        train_language_and_dataset "$lang" oscar "$vocab_size" "$NDOC_FOR_LM_OSCAR" "$model_type"
    done
  done
done