evaluate
Browse files- evaluate.py +38 -0
evaluate.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
2 |
+
from transformers import RobertaTokenizer, RobertaTokenizerFast, RobertaForMaskedLM, pipeline
|
3 |
+
import torch
|
4 |
+
|
5 |
+
def evaluate(framework):
|
6 |
+
text = "På biblioteket kan du [MASK] en bok."
|
7 |
+
if framework == "flax":
|
8 |
+
model = AutoModelForMaskedLM.from_pretrained("./", from_flax=True)
|
9 |
+
elif framework == "tensorflow":
|
10 |
+
model = AutoModelForMaskedLM.from_pretrained("./", from_tf=True)
|
11 |
+
else:
|
12 |
+
model = AutoModelForMaskedLM.from_pretrained("./")
|
13 |
+
|
14 |
+
print("Testing with AutoTokenizer")
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained("./")
|
16 |
+
my_unmasker_pipeline = pipeline('fill-mask', model=model, tokenizer=tokenizer)
|
17 |
+
output = my_unmasker_pipeline(text)
|
18 |
+
print(output)
|
19 |
+
|
20 |
+
#print("\n\nTesting with RobertaTokenizer")
|
21 |
+
#tokenizer = RobertaTokenizer.from_pretrained("./")
|
22 |
+
#my_unmasker_pipeline = pipeline('fill-mask', model=model, tokenizer=tokenizer)
|
23 |
+
#output = my_unmasker_pipeline(text)
|
24 |
+
#print(output)
|
25 |
+
|
26 |
+
#print("\n\nTesting with RobertaTokenizerFast")
|
27 |
+
#tokenizer = RobertaTokenizerFast.from_pretrained("./")
|
28 |
+
#my_unmasker_pipeline = pipeline('fill-mask', model=model, tokenizer=tokenizer)
|
29 |
+
#output = my_unmasker_pipeline(text)
|
30 |
+
#print(output)
|
31 |
+
|
32 |
+
|
33 |
+
print("Evaluating PyTorch Model")
|
34 |
+
evaluate("pytorch")
|
35 |
+
|
36 |
+
|
37 |
+
#print("Evaluating Flax Model")
|
38 |
+
#evaluate("flax")
|