File size: 5,575 Bytes
7fd2400 4a7ee89 7bfb630 55e8a1c 7bfb630 4a7ee89 7bfb630 4a7ee89 7bfb630 4a7ee89 7bfb630 4a7ee89 55e8a1c 4a7ee89 7fd2400 7bfb630 3ffd5bf 7bfb630 55e8a1c 7bfb630 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
---
language:
- se
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- audiofolder
metrics:
- wer
base_model: openai/whisper-large-v2
model-index:
- name: Whisper Large Northern Sámi
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: audiofolder
type: audiofolder
config: default
split: test
args: default
metrics:
- type: wer
value: 24.914285714285715
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Large Northern Sámi
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5559
- Wer: 24.9143
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 12
- eval_batch_size: 6
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 60000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:-----:|:---------------:|:-------:|
| 0.4665 | 58.0 | 1000 | 0.8572 | 54.5143 |
| 0.3041 | 117.0 | 2000 | 0.6711 | 44.1143 |
| 0.2671 | 176.0 | 3000 | 0.5794 | 39.7714 |
| 0.1761 | 235.0 | 4000 | 0.5357 | 35.0857 |
| 0.2089 | 294.0 | 5000 | 0.5094 | 33.6 |
| 0.1456 | 352.0 | 6000 | 0.4959 | 33.0286 |
| 0.1514 | 411.0 | 7000 | 0.4864 | 32.5714 |
| 0.1203 | 470.0 | 8000 | 0.4625 | 31.4286 |
| 0.0879 | 529.0 | 9000 | 0.4916 | 45.4857 |
| 0.0825 | 588.0 | 10000 | 0.4962 | 30.6286 |
| 0.0753 | 647.0 | 11000 | 0.4723 | 31.2 |
| 0.0812 | 705.0 | 12000 | 0.4574 | 28.6857 |
| 0.062 | 764.0 | 13000 | 0.4628 | 28.8000 |
| 0.0604 | 823.0 | 14000 | 0.4668 | 28.0000 |
| 0.0666 | 882.0 | 15000 | 0.4697 | 28.6857 |
| 0.0405 | 941.0 | 16000 | 0.4908 | 54.6286 |
| 0.0349 | 999.0 | 17000 | 0.4728 | 28.4571 |
| 0.0409 | 1058.0 | 18000 | 0.4884 | 28.4571 |
| 0.0292 | 1117.0 | 19000 | 0.4576 | 27.3143 |
| 0.0247 | 1176.0 | 20000 | 0.4734 | 28.9143 |
| 0.0229 | 1235.0 | 21000 | 0.4899 | 29.9429 |
| 0.0271 | 1294.0 | 22000 | 0.4790 | 28.1143 |
| 0.0271 | 1352.0 | 23000 | 0.5012 | 30.1714 |
| 0.0184 | 1411.0 | 24000 | 0.5008 | 27.3143 |
| 0.0211 | 1470.0 | 25000 | 0.5118 | 27.6571 |
| 0.0183 | 1529.0 | 26000 | 0.5398 | 30.0571 |
| 0.0164 | 1588.0 | 27000 | 0.5006 | 27.3143 |
| 0.0169 | 1647.0 | 28000 | 0.5059 | 27.0857 |
| 0.0147 | 1705.0 | 29000 | 0.5325 | 27.7714 |
| 0.0104 | 1764.0 | 30000 | 0.4818 | 26.1714 |
| 0.0128 | 1823.0 | 31000 | 0.5259 | 28.3429 |
| 0.0145 | 1882.0 | 32000 | 0.5299 | 26.2857 |
| 0.0075 | 1941.0 | 33000 | 0.5082 | 27.4286 |
| 0.0087 | 1999.0 | 34000 | 0.5144 | 26.6286 |
| 0.005 | 2058.0 | 35000 | 0.5590 | 27.0857 |
| 0.0099 | 2117.0 | 36000 | 0.5546 | 28.9143 |
| 0.007 | 2176.0 | 37000 | 0.5364 | 26.8571 |
| 0.0045 | 2235.0 | 38000 | 0.5574 | 27.2000 |
| 0.0064 | 2294.0 | 39000 | 0.5051 | 25.7143 |
| 0.0079 | 2352.0 | 40000 | 0.5247 | 25.9429 |
| 0.0083 | 2411.0 | 41000 | 0.5514 | 25.6 |
| 0.0101 | 2470.0 | 42000 | 0.5710 | 25.6 |
| 0.0062 | 2529.0 | 43000 | 0.5830 | 28.0000 |
| 0.0046 | 2588.0 | 44000 | 0.5828 | 26.8571 |
| 0.0053 | 2647.0 | 45000 | 0.5621 | 27.4286 |
| 0.0047 | 2705.0 | 46000 | 0.5673 | 25.9429 |
| 0.0045 | 2764.0 | 47000 | 0.5220 | 25.6 |
| 0.0065 | 2823.0 | 48000 | 0.5704 | 27.7714 |
| 0.0039 | 2882.0 | 49000 | 0.5741 | 27.7714 |
| 0.0027 | 2941.0 | 50000 | 0.5762 | 26.0571 |
| 0.0019 | 2999.0 | 51000 | 0.5559 | 24.9143 |
| 0.0015 | 3058.0 | 52000 | 0.5777 | 28.5714 |
| 0.0026 | 3117.0 | 53000 | 0.5589 | 25.2571 |
| 0.0032 | 3176.0 | 54000 | 0.6061 | 26.9714 |
| 0.0025 | 3235.0 | 55000 | 0.5776 | 25.1429 |
| 0.0046 | 3294.0 | 56000 | 0.5753 | 27.3143 |
| 0.0015 | 3352.0 | 57000 | 0.5736 | 27.2000 |
| 0.003 | 3411.0 | 58000 | 0.5933 | 25.6 |
| 0.002 | 3470.0 | 59000 | 0.6036 | 25.6 |
| 0.0007 | 58.0 | 60000 | 0.5975 | 25.2571 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.11.0
|