xellDart13
commited on
Commit
•
362c2e3
1
Parent(s):
1ef7554
Update README.md
Browse files
README.md
CHANGED
@@ -49,10 +49,9 @@ language:
|
|
49 |
- es
|
50 |
---
|
51 |
|
52 |
-
#
|
53 |
-
|
54 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
55 |
|
|
|
56 |
|
57 |
|
58 |
## Model Details
|
@@ -61,185 +60,52 @@ language:
|
|
61 |
|
62 |
<!-- Provide a longer summary of what this model is. -->
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
- **
|
67 |
-
- **
|
68 |
-
- **Shared by [optional]:** [More Information Needed]
|
69 |
-
- **Model type:** [More Information Needed]
|
70 |
-
- **Language(s) (NLP):** [More Information Needed]
|
71 |
-
- **License:** [More Information Needed]
|
72 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
73 |
-
|
74 |
-
### Model Sources [optional]
|
75 |
-
|
76 |
-
<!-- Provide the basic links for the model. -->
|
77 |
-
|
78 |
-
- **Repository:** [More Information Needed]
|
79 |
-
- **Paper [optional]:** [More Information Needed]
|
80 |
-
- **Demo [optional]:** [More Information Needed]
|
81 |
|
82 |
## Uses
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
### Direct Use
|
87 |
-
|
88 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
### Downstream Use [optional]
|
93 |
-
|
94 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
95 |
-
|
96 |
-
[More Information Needed]
|
97 |
-
|
98 |
-
### Out-of-Scope Use
|
99 |
-
|
100 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
101 |
-
|
102 |
-
[More Information Needed]
|
103 |
-
|
104 |
-
## Bias, Risks, and Limitations
|
105 |
-
|
106 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
107 |
-
|
108 |
-
[More Information Needed]
|
109 |
-
|
110 |
-
### Recommendations
|
111 |
-
|
112 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
113 |
-
|
114 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
115 |
-
|
116 |
-
## How to Get Started with the Model
|
117 |
-
|
118 |
-
Use the code below to get started with the model.
|
119 |
-
|
120 |
-
[More Information Needed]
|
121 |
-
|
122 |
-
## Training Details
|
123 |
-
|
124 |
-
### Training Data
|
125 |
-
|
126 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
127 |
-
|
128 |
-
[More Information Needed]
|
129 |
-
|
130 |
-
### Training Procedure
|
131 |
-
|
132 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
133 |
-
|
134 |
-
#### Preprocessing [optional]
|
135 |
-
|
136 |
-
[More Information Needed]
|
137 |
-
|
138 |
-
|
139 |
-
#### Training Hyperparameters
|
140 |
-
|
141 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
142 |
-
|
143 |
-
#### Speeds, Sizes, Times [optional]
|
144 |
-
|
145 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
146 |
-
|
147 |
-
[More Information Needed]
|
148 |
|
149 |
-
|
|
|
|
|
|
|
150 |
|
151 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
152 |
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
-
|
|
|
156 |
|
157 |
-
<!-- This should link to a Dataset Card if possible. -->
|
158 |
|
159 |
-
|
|
|
160 |
|
161 |
-
|
162 |
|
163 |
-
|
164 |
|
165 |
-
|
166 |
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
[More Information Needed]
|
176 |
-
|
177 |
-
#### Summary
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
## Model Examination [optional]
|
182 |
-
|
183 |
-
<!-- Relevant interpretability work for the model goes here -->
|
184 |
-
|
185 |
-
[More Information Needed]
|
186 |
-
|
187 |
-
## Environmental Impact
|
188 |
-
|
189 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
190 |
-
|
191 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
192 |
-
|
193 |
-
- **Hardware Type:** [More Information Needed]
|
194 |
-
- **Hours used:** [More Information Needed]
|
195 |
-
- **Cloud Provider:** [More Information Needed]
|
196 |
-
- **Compute Region:** [More Information Needed]
|
197 |
-
- **Carbon Emitted:** [More Information Needed]
|
198 |
-
|
199 |
-
## Technical Specifications [optional]
|
200 |
-
|
201 |
-
### Model Architecture and Objective
|
202 |
-
|
203 |
-
[More Information Needed]
|
204 |
-
|
205 |
-
### Compute Infrastructure
|
206 |
-
|
207 |
-
[More Information Needed]
|
208 |
-
|
209 |
-
#### Hardware
|
210 |
-
|
211 |
-
[More Information Needed]
|
212 |
-
|
213 |
-
#### Software
|
214 |
-
|
215 |
-
[More Information Needed]
|
216 |
-
|
217 |
-
## Citation [optional]
|
218 |
-
|
219 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
220 |
-
|
221 |
-
**BibTeX:**
|
222 |
-
|
223 |
-
[More Information Needed]
|
224 |
-
|
225 |
-
**APA:**
|
226 |
-
|
227 |
-
[More Information Needed]
|
228 |
-
|
229 |
-
## Glossary [optional]
|
230 |
-
|
231 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
232 |
-
|
233 |
-
[More Information Needed]
|
234 |
-
|
235 |
-
## More Information [optional]
|
236 |
-
|
237 |
-
[More Information Needed]
|
238 |
-
|
239 |
-
## Model Card Authors [optional]
|
240 |
|
241 |
-
|
|
|
242 |
|
243 |
-
|
244 |
|
245 |
-
[More Information Needed]
|
|
|
49 |
- es
|
50 |
---
|
51 |
|
52 |
+
# Structure Extraction Model
|
|
|
|
|
53 |
|
54 |
+
nebuia_extract_small is an extraction model inspired by NuExtract. LegalExtract-ES is a version of qween 1.5b, fine-tuned on a private high-quality synthetic dataset for entity extraction in Spanish legal texts with an 8k context length. Supports JSON template like nu extract describing the information you need to extract. NebuIA Extract specializes in identifying and extracting legal entities and relevant information from Spanish legal documents.
|
55 |
|
56 |
|
57 |
## Model Details
|
|
|
60 |
|
61 |
<!-- Provide a longer summary of what this model is. -->
|
62 |
|
63 |
+
- **Developed by:** [NebuIA](https://nebuia.com)
|
64 |
+
- **Language(s) (NLP):** es
|
65 |
+
- **License:** mit
|
66 |
+
- **Finetuned from model [optional]:** [Qween2 1.5b](https://huggingface.co/Qwen/Qwen2-1.5B-Instruct)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
## Uses
|
69 |
|
70 |
+
Same template as NuExtract
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
+
```python
|
73 |
+
import json
|
74 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
75 |
+
import torch
|
76 |
|
|
|
77 |
|
78 |
+
def predict_extract(model, tokenizer, text, schema):
|
79 |
+
schema = json.dumps(json.loads(schema), indent=4)
|
80 |
+
input_llm = "<|input|>\n### Template:\n" + schema + "\n"
|
81 |
+
|
82 |
+
input_llm += "### Text:\n"+text +"\n<|output|>\n"
|
83 |
+
input_ids = tokenizer(input_llm, return_tensors="pt", truncation=True, max_length=4000).to("cuda")
|
84 |
|
85 |
+
output = tokenizer.decode(model.generate(**input_ids)[0], skip_special_tokens=True)
|
86 |
+
return output.split("<|output|>")[1].split("<|end-output|>")[0]
|
87 |
|
|
|
88 |
|
89 |
+
model = AutoModelForCausalLM.from_pretrained("NebuIA/nebuia_extract_small", trust_remote_code=True, torch_dtype=torch.bfloat16)
|
90 |
+
tokenizer = AutoTokenizer.from_pretrained("NebuIA/nebuia_extract_small", trust_remote_code=True)
|
91 |
|
92 |
+
model.to("cuda")
|
93 |
|
94 |
+
model.eval()
|
95 |
|
96 |
+
text = """large legal text"""
|
97 |
|
98 |
+
schema = """{
|
99 |
+
"calusulas": [],
|
100 |
+
"notario": "",
|
101 |
+
"jurisdiccion": {
|
102 |
+
"clausula_jurisdiccion": "",
|
103 |
+
"lugar": ""
|
104 |
+
}
|
105 |
+
}"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
+
prediction = predict_extract(model, tokenizer, text, schema)
|
108 |
+
print(prediction)
|
109 |
|
110 |
+
```
|
111 |
|
|