Nebyx commited on
Commit
0664fdd
·
1 Parent(s): e32ec95

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.19 +/- 0.10
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f093191d045634176c3f38d5457ca94642ee6d01832dbffb4fb36007e8ab7c56
3
+ size 106831
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x79c81a40d6c0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x79c81a21dec0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1692631570877627381,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA5LaOPhWagbsjO/A+5LaOPhWagbsjO/A+quyLPzij7j7GJpE+xv/Qv/W8DUAdZxfAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEmmxvn6jsT8KDJK/VBfPPokbuD+X5Gu+HYuzP/vytj+bPxw/UHyRv2ZNzz+qQ6W/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADkto4+FZqBuyM78D4uX/M+DeqAu6lUyD7kto4+FZqBuyM78D4uX/M+DeqAu6lUyD6q7Is/OKPuPsYmkT4LGMo/owHTPxl1k7/G/9C/9bwNQB1nF8Ckxqy/2BqOPwgscL+UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[ 0.2787391 -0.00395514 0.46920118]\n [ 0.2787391 -0.00395514 0.46920118]\n [ 1.0931599 0.466089 0.28349894]\n [-1.6328056 2.214658 -2.3656685 ]]",
34
+ "desired_goal": "[[-0.34650475 1.3878019 -1.1409924 ]\n [ 0.40447485 1.4383403 -0.23036419]\n [ 1.4026829 1.4292902 0.61034554]\n [-1.1366062 1.6195495 -1.2911274 ]]",
35
+ "observation": "[[ 0.2787391 -0.00395514 0.46920118 0.47533554 -0.00393415 0.3912709 ]\n [ 0.2787391 -0.00395514 0.46920118 0.47533554 -0.00393415 0.3912709 ]\n [ 1.0931599 0.466089 0.28349894 1.5788587 1.6484874 -1.152011 ]\n [-1.6328056 2.214658 -2.3656685 -1.349812 1.1101942 -0.93817186]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAiJzfvS7b8L2mv5s9KhHdPfHSIDzjJSA+ij4vPQHurj3R1JQ9G2rmvJDdCj6f7I0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[-0.10918528 -0.11760555 0.07604913]\n [ 0.10794289 0.00981592 0.15639453]\n [ 0.04278425 0.08541489 0.07267154]\n [-0.02812677 0.13561082 0.2771959 ]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8x5JK8L8aaMAWyUSwOMAXSUR0CmTRR0+1SgdX2UKGgGR7/DzH0btJFtaAdLAmgIR0CmTNDxsl9jdX2UKGgGR7/Sh73PAwfyaAdLA2gIR0CmTE/NiYsvdX2UKGgGR7/XV4oqkM1CaAdLBGgIR0CmTSn+qBEsdX2UKGgGR7/Pfcer+5vtaAdLBGgIR0CmTOaUzKs/dX2UKGgGR7/SGdqcmShbaAdLA2gIR0CmTF4uCf6HdX2UKGgGR7/HV5rxiG34aAdLAmgIR0CmTGppvgm7dX2UKGgGR7/NKOktVaOhaAdLA2gIR0CmTTtWU8msdX2UKGgGR7/Jk7wKBun/aAdLA2gIR0CmTPfrjYI0dX2UKGgGR7/kPQfIS13MaAdLCGgIR0CmTLhwVCXydX2UKGgGR7/HMkhRqGlAaAdLA2gIR0CmTUhOxjaxdX2UKGgGR7/XssxwhnrZaAdLBGgIR0CmTHxuCPIXdX2UKGgGR7/b5le4TbnHaAdLBGgIR0CmTQxLTQVsdX2UKGgGR7/ZQ9zOoo/iaAdLBWgIR0CmTNDy4FzNdX2UKGgGR7/NRuTA31jBaAdLA2gIR0CmTVjkU9IPdX2UKGgGR7+9YA80UGmlaAdLAmgIR0CmTRVQZXMhdX2UKGgGR7/JbfP5YYBOaAdLA2gIR0CmTIx+jM3ZdX2UKGgGR7/NsZYPoV2zaAdLA2gIR0CmTN4sVclgdX2UKGgGR7/KIHkcS5AhaAdLA2gIR0CmTWi/O+qSdX2UKGgGR7/M2uPmxMWXaAdLA2gIR0CmTSU5+6RRdX2UKGgGR7/LAfMfRu0kaAdLA2gIR0CmTJyj59E1dX2UKGgGR7/BJ7sv7FbWaAdLAmgIR0CmTOobwSamdX2UKGgGR7+4W8AaNuLraAdLAmgIR0CmTS8YIjW1dX2UKGgGR7+4uzyBkI5YaAdLAmgIR0CmTKcpsoDxdX2UKGgGR7/MN5MURFqjaAdLA2gIR0CmTXizTnaGdX2UKGgGR7/O9KVY6nzhaAdLA2gIR0CmTPnKW9lFdX2UKGgGR7+4pXp4bCJoaAdLAmgIR0CmTLDeTFERdX2UKGgGR7/LAfMfRu0kaAdLA2gIR0CmTUDbBXS0dX2UKGgGR7/W7mMfigkDaAdLBGgIR0CmTY6MR6F/dX2UKGgGR7/EFPBSDRMOaAdLA2gIR0CmTU9+XqqwdX2UKGgGR7/Xh+fAbhm5aAdLBGgIR0CmTRBdMTN/dX2UKGgGR7/UT987ZFodaAdLBGgIR0CmTMd0aIepdX2UKGgGR7+VaOgg5imVaAdLAWgIR0CmTMu801qGdX2UKGgGR7/Q5zHS4OMEaAdLA2gIR0CmTZ85S3spdX2UKGgGR7/BBUrCm/FjaAdLAmgIR0CmTVuearmydX2UKGgGR7/RPKMefZmJaAdLA2gIR0CmTSBisny/dX2UKGgGR7+2thd+ocaPaAdLAmgIR0CmTWRsl9jPdX2UKGgGR7/SoDxLCemOaAdLA2gIR0CmTNvMjeKsdX2UKGgGR7/UHerMkhRqaAdLA2gIR0CmTS18CxNZdX2UKGgGR7+n/kvK2a2GaAdLAWgIR0CmTTTxwyZbdX2UKGgGR7/aAiFCb+cZaAdLBmgIR0CmTb0s4DLbdX2UKGgGR7/XjKgZjx0/aAdLBGgIR0CmTXoN3GGVdX2UKGgGR7/Wggow22ofaAdLBGgIR0CmTPGI0qH5dX2UKGgGR7/VYr8R+SbIaAdLA2gIR0CmTUPwNLDidX2UKGgGR7/VghbGFSKnaAdLA2gIR0CmTcuGj9GadX2UKGgGR7/PVS4vvjOtaAdLA2gIR0CmTYgS39aVdX2UKGgGR7/MRAbADaGpaAdLA2gIR0CmTP9wNsnBdX2UKGgGR7+yaa1Cw8nvaAdLAmgIR0CmTZSJ9AoodX2UKGgGR7/ITs6aLGaQaAdLA2gIR0CmTVUlqrR0dX2UKGgGR7/N6/qPfbblaAdLA2gIR0CmTRC1Z1V6dX2UKGgGR7/VskY4yXUpaAdLBGgIR0CmTeHndO6/dX2UKGgGR7+igdwNsnAqaAdLAWgIR0CmTeY3m3fAdX2UKGgGR7/MdHUc4o7WaAdLA2gIR0CmTaKwhW5pdX2UKGgGR7/Rbuc+aBqcaAdLA2gIR0CmTWNSydFwdX2UKGgGR7/OAG0NSZSfaAdLA2gIR0CmTSD8UEgXdX2UKGgGR7/AyfthNM4+aAdLAmgIR0CmTfI+nqFAdX2UKGgGR7/AQ9RrJr+HaAdLAmgIR0CmTa6ef7JodX2UKGgGR7/BYT0xubZwaAdLAmgIR0CmTW9C3PRidX2UKGgGR7/B1dxAB1cMaAdLAmgIR0CmTSo/7iyZdX2UKGgGR7/Z9du5z5oHaAdLBGgIR0CmTgeCTUy6dX2UKGgGR7/a3JPqLS/kaAdLBGgIR0CmTcQjMV1wdX2UKGgGR7/gH752yLQ5aAdLBGgIR0CmTYT5ftx/dX2UKGgGR7/P3os7MgU2aAdLA2gIR0CmTTv6j323dX2UKGgGR7+3oQnQY1pCaAdLAmgIR0CmTUWIoE0SdX2UKGgGR7/MyYXwb2lEaAdLA2gIR0CmTdOCwr1/dX2UKGgGR7/UAvtdAxBWaAdLA2gIR0CmTZR0EHMVdX2UKGgGR7/ZGff4yoGZaAdLBGgIR0CmThygXdj5dX2UKGgGR7/RXUH6dlNDaAdLA2gIR0CmTeQe/5+IdX2UKGgGR7/bFY+0PYnOaAdLBGgIR0CmTVt5t3wDdX2UKGgGR7/RJbt7a7EpaAdLA2gIR0CmTixiG34LdX2UKGgGR7/VLlFMIu5CaAdLBWgIR0CmTa31zySWdX2UKGgGR7/Ab+cYqG1yaAdLAmgIR0CmTWTzundgdX2UKGgGR7/LXqZ+hGpdaAdLA2gIR0CmTfI4uK4ydX2UKGgGR7/XGb1AZ88caAdLA2gIR0CmTj0AtFrmdX2UKGgGR7+1uZTho/RmaAdLAmgIR0CmTbnTZxrBdX2UKGgGR7+SuuA7PppwaAdLAWgIR0CmTkHYYixFdX2UKGgGR7/JW6K+BYmtaAdLA2gIR0CmTXWfChvjdX2UKGgGR7/JyHVPN3W4aAdLA2gIR0CmTgMrVe8gdX2UKGgGR7/QSx7iQ1aXaAdLA2gIR0CmTckPlMh6dX2UKGgGR7/NWjoIOYplaAdLA2gIR0CmTlEc81XOdX2UKGgGR7/PP4VRDTjOaAdLA2gIR0CmThSDIzWPdX2UKGgGR7/OiGnGbTc7aAdLA2gIR0CmTdlp48lpdX2UKGgGR7/IIyj59E1EaAdLA2gIR0CmTmFlbu+idX2UKGgGR7/H5pJwsGxEaAdLA2gIR0CmTiNGEwnIdX2UKGgGR7+eS4e9zwMIaAdLAWgIR0CmTikFW4mUdX2UKGgGR7/TZuhsZYPoaAdLBGgIR0CmTfCfYjB3dX2UKGgGR7/Ncu8K5TZQaAdLBGgIR0CmTnh6a9bpdX2UKGgGR7+2ogmqo60ZaAdLAmgIR0CmTjT4cm0FdX2UKGgGR7/mtxlxwQ18aAdLC2gIR0CmTbD5KvmpdX2UKGgGR7/S7u2JBPbgaAdLA2gIR0CmTf6InBtUdX2UKGgGR7/SbpeNT987aAdLA2gIR0CmTob3wkPddX2UKGgGR7/WPGQ0XP7faAdLBGgIR0CmTksbm2b5dX2UKGgGR7/M150KZ2IPaAdLA2gIR0CmTcKgAZKndX2UKGgGR7/Es+3Ytg8baAdLAmgIR0CmTpNn5BTodX2UKGgGR7/NmK64Ds+naAdLA2gIR0CmThCG34KydX2UKGgGR7+cMRYigTRIaAdLAWgIR0CmTcdo371qdX2UKGgGR7/WLRrrPdEcaAdLA2gIR0CmTliHh0hedX2UKGgGR7+4q/dqL0jDaAdLAmgIR0CmThlEZzgddX2UKGgGR7/KqEvkBCD3aAdLA2gIR0CmTqE7fYSQdX2UKGgGR7+o1tO2y9mIaAdLAWgIR0CmTl2ZiNKidWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1f0b18030282b882c1cefc6b60a6dc2d6c6a88cc8a50abce503a8e0d05054a2
3
+ size 44734
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d7324af33b8519b23e010a8303e6729b332d2b5616d717e26c7dd5d226f27ed
3
+ size 46014
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x79c81a40d6c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79c81a21dec0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692631570877627381, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA5LaOPhWagbsjO/A+5LaOPhWagbsjO/A+quyLPzij7j7GJpE+xv/Qv/W8DUAdZxfAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAEmmxvn6jsT8KDJK/VBfPPokbuD+X5Gu+HYuzP/vytj+bPxw/UHyRv2ZNzz+qQ6W/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADkto4+FZqBuyM78D4uX/M+DeqAu6lUyD7kto4+FZqBuyM78D4uX/M+DeqAu6lUyD6q7Is/OKPuPsYmkT4LGMo/owHTPxl1k7/G/9C/9bwNQB1nF8Ckxqy/2BqOPwgscL+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.2787391 -0.00395514 0.46920118]\n [ 0.2787391 -0.00395514 0.46920118]\n [ 1.0931599 0.466089 0.28349894]\n [-1.6328056 2.214658 -2.3656685 ]]", "desired_goal": "[[-0.34650475 1.3878019 -1.1409924 ]\n [ 0.40447485 1.4383403 -0.23036419]\n [ 1.4026829 1.4292902 0.61034554]\n [-1.1366062 1.6195495 -1.2911274 ]]", "observation": "[[ 0.2787391 -0.00395514 0.46920118 0.47533554 -0.00393415 0.3912709 ]\n [ 0.2787391 -0.00395514 0.46920118 0.47533554 -0.00393415 0.3912709 ]\n [ 1.0931599 0.466089 0.28349894 1.5788587 1.6484874 -1.152011 ]\n [-1.6328056 2.214658 -2.3656685 -1.349812 1.1101942 -0.93817186]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAiJzfvS7b8L2mv5s9KhHdPfHSIDzjJSA+ij4vPQHurj3R1JQ9G2rmvJDdCj6f7I0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.10918528 -0.11760555 0.07604913]\n [ 0.10794289 0.00981592 0.15639453]\n [ 0.04278425 0.08541489 0.07267154]\n [-0.02812677 0.13561082 0.2771959 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8x5JK8L8aaMAWyUSwOMAXSUR0CmTRR0+1SgdX2UKGgGR7/DzH0btJFtaAdLAmgIR0CmTNDxsl9jdX2UKGgGR7/Sh73PAwfyaAdLA2gIR0CmTE/NiYsvdX2UKGgGR7/XV4oqkM1CaAdLBGgIR0CmTSn+qBEsdX2UKGgGR7/Pfcer+5vtaAdLBGgIR0CmTOaUzKs/dX2UKGgGR7/SGdqcmShbaAdLA2gIR0CmTF4uCf6HdX2UKGgGR7/HV5rxiG34aAdLAmgIR0CmTGppvgm7dX2UKGgGR7/NKOktVaOhaAdLA2gIR0CmTTtWU8msdX2UKGgGR7/Jk7wKBun/aAdLA2gIR0CmTPfrjYI0dX2UKGgGR7/kPQfIS13MaAdLCGgIR0CmTLhwVCXydX2UKGgGR7/HMkhRqGlAaAdLA2gIR0CmTUhOxjaxdX2UKGgGR7/XssxwhnrZaAdLBGgIR0CmTHxuCPIXdX2UKGgGR7/b5le4TbnHaAdLBGgIR0CmTQxLTQVsdX2UKGgGR7/ZQ9zOoo/iaAdLBWgIR0CmTNDy4FzNdX2UKGgGR7/NRuTA31jBaAdLA2gIR0CmTVjkU9IPdX2UKGgGR7+9YA80UGmlaAdLAmgIR0CmTRVQZXMhdX2UKGgGR7/JbfP5YYBOaAdLA2gIR0CmTIx+jM3ZdX2UKGgGR7/NsZYPoV2zaAdLA2gIR0CmTN4sVclgdX2UKGgGR7/KIHkcS5AhaAdLA2gIR0CmTWi/O+qSdX2UKGgGR7/M2uPmxMWXaAdLA2gIR0CmTSU5+6RRdX2UKGgGR7/LAfMfRu0kaAdLA2gIR0CmTJyj59E1dX2UKGgGR7/BJ7sv7FbWaAdLAmgIR0CmTOobwSamdX2UKGgGR7+4W8AaNuLraAdLAmgIR0CmTS8YIjW1dX2UKGgGR7+4uzyBkI5YaAdLAmgIR0CmTKcpsoDxdX2UKGgGR7/MN5MURFqjaAdLA2gIR0CmTXizTnaGdX2UKGgGR7/O9KVY6nzhaAdLA2gIR0CmTPnKW9lFdX2UKGgGR7+4pXp4bCJoaAdLAmgIR0CmTLDeTFERdX2UKGgGR7/LAfMfRu0kaAdLA2gIR0CmTUDbBXS0dX2UKGgGR7/W7mMfigkDaAdLBGgIR0CmTY6MR6F/dX2UKGgGR7/EFPBSDRMOaAdLA2gIR0CmTU9+XqqwdX2UKGgGR7/Xh+fAbhm5aAdLBGgIR0CmTRBdMTN/dX2UKGgGR7/UT987ZFodaAdLBGgIR0CmTMd0aIepdX2UKGgGR7+VaOgg5imVaAdLAWgIR0CmTMu801qGdX2UKGgGR7/Q5zHS4OMEaAdLA2gIR0CmTZ85S3spdX2UKGgGR7/BBUrCm/FjaAdLAmgIR0CmTVuearmydX2UKGgGR7/RPKMefZmJaAdLA2gIR0CmTSBisny/dX2UKGgGR7+2thd+ocaPaAdLAmgIR0CmTWRsl9jPdX2UKGgGR7/SoDxLCemOaAdLA2gIR0CmTNvMjeKsdX2UKGgGR7/UHerMkhRqaAdLA2gIR0CmTS18CxNZdX2UKGgGR7+n/kvK2a2GaAdLAWgIR0CmTTTxwyZbdX2UKGgGR7/aAiFCb+cZaAdLBmgIR0CmTb0s4DLbdX2UKGgGR7/XjKgZjx0/aAdLBGgIR0CmTXoN3GGVdX2UKGgGR7/Wggow22ofaAdLBGgIR0CmTPGI0qH5dX2UKGgGR7/VYr8R+SbIaAdLA2gIR0CmTUPwNLDidX2UKGgGR7/VghbGFSKnaAdLA2gIR0CmTcuGj9GadX2UKGgGR7/PVS4vvjOtaAdLA2gIR0CmTYgS39aVdX2UKGgGR7/MRAbADaGpaAdLA2gIR0CmTP9wNsnBdX2UKGgGR7+yaa1Cw8nvaAdLAmgIR0CmTZSJ9AoodX2UKGgGR7/ITs6aLGaQaAdLA2gIR0CmTVUlqrR0dX2UKGgGR7/N6/qPfbblaAdLA2gIR0CmTRC1Z1V6dX2UKGgGR7/VskY4yXUpaAdLBGgIR0CmTeHndO6/dX2UKGgGR7+igdwNsnAqaAdLAWgIR0CmTeY3m3fAdX2UKGgGR7/MdHUc4o7WaAdLA2gIR0CmTaKwhW5pdX2UKGgGR7/Rbuc+aBqcaAdLA2gIR0CmTWNSydFwdX2UKGgGR7/OAG0NSZSfaAdLA2gIR0CmTSD8UEgXdX2UKGgGR7/AyfthNM4+aAdLAmgIR0CmTfI+nqFAdX2UKGgGR7/AQ9RrJr+HaAdLAmgIR0CmTa6ef7JodX2UKGgGR7/BYT0xubZwaAdLAmgIR0CmTW9C3PRidX2UKGgGR7/B1dxAB1cMaAdLAmgIR0CmTSo/7iyZdX2UKGgGR7/Z9du5z5oHaAdLBGgIR0CmTgeCTUy6dX2UKGgGR7/a3JPqLS/kaAdLBGgIR0CmTcQjMV1wdX2UKGgGR7/gH752yLQ5aAdLBGgIR0CmTYT5ftx/dX2UKGgGR7/P3os7MgU2aAdLA2gIR0CmTTv6j323dX2UKGgGR7+3oQnQY1pCaAdLAmgIR0CmTUWIoE0SdX2UKGgGR7/MyYXwb2lEaAdLA2gIR0CmTdOCwr1/dX2UKGgGR7/UAvtdAxBWaAdLA2gIR0CmTZR0EHMVdX2UKGgGR7/ZGff4yoGZaAdLBGgIR0CmThygXdj5dX2UKGgGR7/RXUH6dlNDaAdLA2gIR0CmTeQe/5+IdX2UKGgGR7/bFY+0PYnOaAdLBGgIR0CmTVt5t3wDdX2UKGgGR7/RJbt7a7EpaAdLA2gIR0CmTixiG34LdX2UKGgGR7/VLlFMIu5CaAdLBWgIR0CmTa31zySWdX2UKGgGR7/Ab+cYqG1yaAdLAmgIR0CmTWTzundgdX2UKGgGR7/LXqZ+hGpdaAdLA2gIR0CmTfI4uK4ydX2UKGgGR7/XGb1AZ88caAdLA2gIR0CmTj0AtFrmdX2UKGgGR7+1uZTho/RmaAdLAmgIR0CmTbnTZxrBdX2UKGgGR7+SuuA7PppwaAdLAWgIR0CmTkHYYixFdX2UKGgGR7/JW6K+BYmtaAdLA2gIR0CmTXWfChvjdX2UKGgGR7/JyHVPN3W4aAdLA2gIR0CmTgMrVe8gdX2UKGgGR7/QSx7iQ1aXaAdLA2gIR0CmTckPlMh6dX2UKGgGR7/NWjoIOYplaAdLA2gIR0CmTlEc81XOdX2UKGgGR7/PP4VRDTjOaAdLA2gIR0CmThSDIzWPdX2UKGgGR7/OiGnGbTc7aAdLA2gIR0CmTdlp48lpdX2UKGgGR7/IIyj59E1EaAdLA2gIR0CmTmFlbu+idX2UKGgGR7/H5pJwsGxEaAdLA2gIR0CmTiNGEwnIdX2UKGgGR7+eS4e9zwMIaAdLAWgIR0CmTikFW4mUdX2UKGgGR7/TZuhsZYPoaAdLBGgIR0CmTfCfYjB3dX2UKGgGR7/Ncu8K5TZQaAdLBGgIR0CmTnh6a9bpdX2UKGgGR7+2ogmqo60ZaAdLAmgIR0CmTjT4cm0FdX2UKGgGR7/mtxlxwQ18aAdLC2gIR0CmTbD5KvmpdX2UKGgGR7/S7u2JBPbgaAdLA2gIR0CmTf6InBtUdX2UKGgGR7/SbpeNT987aAdLA2gIR0CmTob3wkPddX2UKGgGR7/WPGQ0XP7faAdLBGgIR0CmTksbm2b5dX2UKGgGR7/M150KZ2IPaAdLA2gIR0CmTcKgAZKndX2UKGgGR7/Es+3Ytg8baAdLAmgIR0CmTpNn5BTodX2UKGgGR7/NmK64Ds+naAdLA2gIR0CmThCG34KydX2UKGgGR7+cMRYigTRIaAdLAWgIR0CmTcdo371qdX2UKGgGR7/WLRrrPdEcaAdLA2gIR0CmTliHh0hedX2UKGgGR7+4q/dqL0jDaAdLAmgIR0CmThlEZzgddX2UKGgGR7/KqEvkBCD3aAdLA2gIR0CmTqE7fYSQdX2UKGgGR7+o1tO2y9mIaAdLAWgIR0CmTl2ZiNKidWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (678 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.19395426008850336, "std_reward": 0.10007539382190578, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-21T16:14:58.017095"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9da445752ceda2b1b716f8541b08fa9ccde26ab1ec5494b5f3f790fa4623d4f
3
+ size 2623