Neexa4One commited on
Commit
772fe37
·
1 Parent(s): 3ec931e

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 268.90 +/- 9.81
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fab417f1040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fab417f10d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fab417f1160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fab417f11f0>", "_build": "<function ActorCriticPolicy._build at 0x7fab417f1280>", "forward": "<function ActorCriticPolicy.forward at 0x7fab417f1310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fab417f13a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fab417f1430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fab417f14c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fab417f1550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fab417f15e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fab417eb4e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1007104, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673278519544559681, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpj0bz2PBi6kzmAuyKij7LnmyK6X/eSOgAAgD8AAIA/phWiPfa8IrplcN46lwOYNsK2IjpTmgG6AACAPwAAgD9ansS94SSHuuiolTqrJno01jjHutPBqrkAAIA/AACAP02JLz3DGUO6oLK9uokOQzRFAME6vafbOQAAgD8AAIA/8wKOPcNRR7pKcwu5iSJQMxbWkjhb7yA4AACAPwAAgD8zl+i79vQvumIljzoGix21NjulOTr3pbkAAIA/AACAP02WF70puEO63XOdujcf2TU/ApU6LWC1OQAAgD8AAIA/zTySPOx5vrkmOWg6hpQ9NaW3qbriGoe5AACAPwAAgD9mhhm7w3FFuj7D/jw/juC1tq70uVyryLQAAIA/AACAPzPXkzuPpki6FZ12ulrhPbZS5pQ6Y4mNOQAAgD8AAIA/zTTcPMOBQbpnizy6YYn4NSClibtleFo5AACAPwAAgD9mqpC7SEHHuJWLcTramh02/NYWul3FITUAAIA/AACAP83U4rvDKV26Egf4uWkJlzVd9Aq6sgIROQAAgD8AAIA/mok2u649l7r4NQA6iYDcM2aT2LrvchK5AACAPwAAgD+Ai4+9FMiZuv6WBzwV9Tc2EY+2uh6kMTUAAIA/AACAP9rH0b2kGYM99oFRPpRUbr6nuUM9S2OoPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007103999999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIrtUe9kI+XkCUhpRSlIwBbJRN6AOMAXSUR0CkcXYd6sySdX2UKGgGaAloD0MIwM5Nm/EwZkCUhpRSlGgVTegDaBZHQKRyveqJdjZ1fZQoaAZoCWgPQwgq4nSSrVtmQJSGlFKUaBVN6ANoFkdApHNJ19v0iHV9lChoBmgJaA9DCJLOwMjLAmNAlIaUUpRoFU3oA2gWR0CkdJFvQ4S6dX2UKGgGaAloD0MIfF9cqtK0XECUhpRSlGgVTegDaBZHQKR1UxJul411fZQoaAZoCWgPQwjUYYVbPrxcQJSGlFKUaBVN6ANoFkdApHdp8MNMG3V9lChoBmgJaA9DCHpx4qud/WJAlIaUUpRoFU3oA2gWR0CkeFU8/2TQdX2UKGgGaAloD0MI9KPhlLn4ZECUhpRSlGgVTegDaBZHQKR4+/47A+J1fZQoaAZoCWgPQwgWTtL8MbdlQJSGlFKUaBVN6ANoFkdApHmaGetjkXV9lChoBmgJaA9DCNzVq8joiWJAlIaUUpRoFU3oA2gWR0CkepYWcjJNdX2UKGgGaAloD0MI5SoWvyniR0CUhpRSlGgVS95oFkdApHvcNFz+33V9lChoBmgJaA9DCEz+J393uGJAlIaUUpRoFU3oA2gWR0CkfADB/I8ydX2UKGgGaAloD0MIPC8VG/PpZECUhpRSlGgVTegDaBZHQKR80yzolld1fZQoaAZoCWgPQwjaxwp+G+FQQJSGlFKUaBVLqWgWR0CkfN9SMtK7dX2UKGgGaAloD0MIfnN/9bg2ZECUhpRSlGgVTegDaBZHQKR96NedCmd1fZQoaAZoCWgPQwgKvmn67KRlQJSGlFKUaBVN6ANoFkdApH/cgr6LwXV9lChoBmgJaA9DCKaBH9UwNmdAlIaUUpRoFU3oA2gWR0CkgDTLfUF0dX2UKGgGaAloD0MIMSb9vRQ7VkCUhpRSlGgVS71oFkdApICO4EwFknV9lChoBmgJaA9DCCYeUDZlGWFAlIaUUpRoFU3oA2gWR0CkjVdq+JxedX2UKGgGaAloD0MIlYJuL2kLZkCUhpRSlGgVTegDaBZHQKSPpUgjhUB1fZQoaAZoCWgPQwi2oWKcv4BiQJSGlFKUaBVN6ANoFkdApJDY4yXUpnV9lChoBmgJaA9DCJFI2/gTfWNAlIaUUpRoFU3oA2gWR0CkkUzodMkAdX2UKGgGaAloD0MISUvl7QhiZUCUhpRSlGgVTegDaBZHQKSSda8pTdd1fZQoaAZoCWgPQwj1hZDz/lBbQJSGlFKUaBVN6ANoFkdApJUJmf5DZ3V9lChoBmgJaA9DCAiUTblCrWRAlIaUUpRoFU3oA2gWR0CklpPgm7aqdX2UKGgGaAloD0MIhuXPt4UWZUCUhpRSlGgVTegDaBZHQKSXQyHEdeZ1fZQoaAZoCWgPQwgX2c7304FmQJSGlFKUaBVN6ANoFkdApJhKdMCcPXV9lChoBmgJaA9DCISEKF/QPGNAlIaUUpRoFU3oA2gWR0Cksyrf+CK8dX2UKGgGaAloD0MIwMx38BNWYECUhpRSlGgVTegDaBZHQKS0SK+BYmt1fZQoaAZoCWgPQwis/3OYL/hjQJSGlFKUaBVN6ANoFkdApLRXEsJ6Y3V9lChoBmgJaA9DCOcYkL1eXWJAlIaUUpRoFU3oA2gWR0CktWzisGPgdX2UKGgGaAloD0MIc/IiE/DWZECUhpRSlGgVTegDaBZHQKS3eQFLWZt1fZQoaAZoCWgPQwjxSpLn+ilhQJSGlFKUaBVN6ANoFkdApLfNlPJq7HV9lChoBmgJaA9DCFbSim8oG2JAlIaUUpRoFU3oA2gWR0CkuCadc0LudX2UKGgGaAloD0MIA5fHmpG6WECUhpRSlGgVTegDaBZHQKTEdV4HHFR1fZQoaAZoCWgPQwgoZVJDG2deQJSGlFKUaBVN6ANoFkdApMa4bbUPQXV9lChoBmgJaA9DCIavr3UpjmFAlIaUUpRoFU3oA2gWR0Ckx9SLhrFgdX2UKGgGaAloD0MI7MA5I8rWZUCUhpRSlGgVTegDaBZHQKTISk2xY7t1fZQoaAZoCWgPQwjXoC+9/a5gQJSGlFKUaBVN6ANoFkdApMliJGe+VXV9lChoBmgJaA9DCGO4OgDiV1xAlIaUUpRoFU3oA2gWR0Cky+oVM23sdX2UKGgGaAloD0MIcyzvqgchXUCUhpRSlGgVTegDaBZHQKTNdoePq9p1fZQoaAZoCWgPQwhfYFYo0npfQJSGlFKUaBVN6ANoFkdApM4lgOSW7nV9lChoBmgJaA9DCF/Rrdf0s2JAlIaUUpRoFU3oA2gWR0CkzzGLUCq7dX2UKGgGaAloD0MIT6+UZQi+ZECUhpRSlGgVTegDaBZHQKTQhx4IKMN1fZQoaAZoCWgPQwiV88XeiwFkQJSGlFKUaBVN6ANoFkdApNGZTn7pFHV9lChoBmgJaA9DCLQEGQEVimNAlIaUUpRoFU3oA2gWR0Ck0acjRlYmdX2UKGgGaAloD0MI3PY96q9SYECUhpRSlGgVTegDaBZHQKTS0IYWLxZ1fZQoaAZoCWgPQwh2pPrOL/hhQJSGlFKUaBVN6ANoFkdApNUOmJm/WXV9lChoBmgJaA9DCGHB/YCHaWBAlIaUUpRoFU3oA2gWR0Ck1Wqh11W9dX2UKGgGaAloD0MIaXIxBtZLZECUhpRSlGgVTegDaBZHQKTVzo7FKkF1fZQoaAZoCWgPQwg0+PvF7OpgQJSGlFKUaBVN6ANoFkdApOODFMqSYHV9lChoBmgJaA9DCHbicrwCR2RAlIaUUpRoFU3oA2gWR0Ck5lC+10DEdX2UKGgGaAloD0MImrLTD+oxYUCUhpRSlGgVTegDaBZHQKTnp9S/CZZ1fZQoaAZoCWgPQwjPgeUIGTFnQJSGlFKUaBVN6ANoFkdApOg5FCswL3V9lChoBmgJaA9DCIDxDBr6j11AlIaUUpRoFU3oA2gWR0Ck6YubZvkzdX2UKGgGaAloD0MIWi+GcqLxYUCUhpRSlGgVTegDaBZHQKTskGA08/51fZQoaAZoCWgPQwi/R/31CoNkQJSGlFKUaBVN6ANoFkdApO5FupCKJnV9lChoBmgJaA9DCO4G0VrRIGNAlIaUUpRoFU3oA2gWR0Ck7whDgIhRdX2UKGgGaAloD0MIgXfy6THtY0CUhpRSlGgVTegDaBZHQKTwQNp/PPd1fZQoaAZoCWgPQwhZNJ2dDB9gQJSGlFKUaBVN6ANoFkdApPG5s9B8hXV9lChoBmgJaA9DCCcSTDUzSGJAlIaUUpRoFU3oA2gWR0Ck8tpRXOnmdX2UKGgGaAloD0MIZkrrbwluYkCUhpRSlGgVTegDaBZHQKTy5+YtxuN1fZQoaAZoCWgPQwhYWHA/4FhlQJSGlFKUaBVN6ANoFkdApPQDV8Ti83V9lChoBmgJaA9DCFn60AX1PmFAlIaUUpRoFU3oA2gWR0Ck9hJC0F8pdX2UKGgGaAloD0MIFFlrKDV7YECUhpRSlGgVTegDaBZHQKT2bE9+w1R1fZQoaAZoCWgPQwgWTz3S4G1iQJSGlFKUaBVN6ANoFkdApPbNeSjgynV9lChoBmgJaA9DCMcPlUbMyVJAlIaUUpRoFUu+aBZHQKUSVI6r/851fZQoaAZoCWgPQwgY7lwYabNkQJSGlFKUaBVN6ANoFkdApR0p5E+gUXV9lChoBmgJaA9DCCz0wTI2q2ZAlIaUUpRoFU3oA2gWR0ClH8VQQ+UydX2UKGgGaAloD0MIRkHw+HbEZUCUhpRSlGgVTegDaBZHQKUhDujynUF1fZQoaAZoCWgPQwh4uB0alvZiQJSGlFKUaBVN6ANoFkdApSGVhy8zynV9lChoBmgJaA9DCOpeJ/VllGZAlIaUUpRoFU3oA2gWR0ClItqE384xdX2UKGgGaAloD0MI+gj84efJXUCUhpRSlGgVTegDaBZHQKUl2vysjml1fZQoaAZoCWgPQwiUowBRMD83QJSGlFKUaBVLvGgWR0ClJk2D6FdtdX2UKGgGaAloD0MIoWez6vO+ZUCUhpRSlGgVTegDaBZHQKUniWoFV1h1fZQoaAZoCWgPQwjnHafoSMdlQJSGlFKUaBVN6ANoFkdApShCsbNr03V9lChoBmgJaA9DCDkpzHuc92NAlIaUUpRoFU3oA2gWR0ClKVeHi3ocdX2UKGgGaAloD0MIjWK5pVWVYECUhpRSlGgVTegDaBZHQKUquG21D0F1fZQoaAZoCWgPQwj9E1ysKP9kQJSGlFKUaBVN6ANoFkdApSvHJDE3sHV9lChoBmgJaA9DCKHXn8Tnc2ZAlIaUUpRoFU3oA2gWR0ClK9WeYlY2dX2UKGgGaAloD0MIPIbHfhaXYkCUhpRSlGgVTegDaBZHQKUvRbypaRp1fZQoaAZoCWgPQwhrnE1HAIBlQJSGlFKUaBVN6ANoFkdApS+eqWC2+nV9lChoBmgJaA9DCNsX0Av3ImRAlIaUUpRoFU3oA2gWR0ClL/nKfWc0dX2UKGgGaAloD0MIxNDq5IyiY0CUhpRSlGgVTegDaBZHQKUx9gJkXk51fZQoaAZoCWgPQwjUnSees2BlQJSGlFKUaBVN6ANoFkdApTu4yKvV3HV9lChoBmgJaA9DCDXxDvCk5mZAlIaUUpRoFU3oA2gWR0ClPvTs6aLGdX2UKGgGaAloD0MIwmnBiz7XZUCUhpRSlGgVTegDaBZHQKU/dhTfixV1fZQoaAZoCWgPQwjWWMLamDtnQJSGlFKUaBVN6ANoFkdApUCG7L+xW3V9lChoBmgJaA9DCJ1IMNVM42dAlIaUUpRoFU3oA2gWR0ClQw2U0Nz9dX2UKGgGaAloD0MI28LzUrGfYUCUhpRSlGgVTegDaBZHQKVDcE/0NBp1fZQoaAZoCWgPQwilgoqq3/1jQJSGlFKUaBVN6ANoFkdApURy6+WWyHV9lChoBmgJaA9DCCGunL0zv2VAlIaUUpRoFU3oA2gWR0ClRQaTGHYZdX2UKGgGaAloD0MIG7rZHyhFZUCUhpRSlGgVTegDaBZHQKVF3x5s0pF1fZQoaAZoCWgPQwh64jlbQAdnQJSGlFKUaBVN6ANoFkdApUb0cn3L3nV9lChoBmgJaA9DCK/sgsG1vGFAlIaUUpRoFU3oA2gWR0ClR9r5RCQcdX2UKGgGaAloD0MIZJKRs7AyX0CUhpRSlGgVTegDaBZHQKVH532VVxV1fZQoaAZoCWgPQwhZiXlWUhplQJSGlFKUaBVN6ANoFkdApUraT8pCr3V9lChoBmgJaA9DCHl0IyyqDGVAlIaUUpRoFU3oA2gWR0ClSy7ROUMYdX2UKGgGaAloD0MIoYFYNvPhZ0CUhpRSlGgVTegDaBZHQKVLj0qYqoZ1fZQoaAZoCWgPQwhJTFDDNw9lQJSGlFKUaBVN6ANoFkdApU2a/GlyinVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 252, "n_steps": 2248, "gamma": 0.999, "gae_lambda": 0.99, "ent_coef": 0.01, "vf_coef": 0.7, "max_grad_norm": 9, "batch_size": 125, "n_epochs": 9, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:417b05c9d060237e60c0c392000217bc3e56ef78ea292a88c52d0f90ac1254ba
3
+ size 147213
ppo-LunarLander-v2-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fab417f1040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fab417f10d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fab417f1160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fab417f11f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fab417f1280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fab417f1310>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fab417f13a0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fab417f1430>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fab417f14c0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fab417f1550>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fab417f15e0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fab417eb4e0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1007104,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1673278519544559681,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpj0bz2PBi6kzmAuyKij7LnmyK6X/eSOgAAgD8AAIA/phWiPfa8IrplcN46lwOYNsK2IjpTmgG6AACAPwAAgD9ansS94SSHuuiolTqrJno01jjHutPBqrkAAIA/AACAP02JLz3DGUO6oLK9uokOQzRFAME6vafbOQAAgD8AAIA/8wKOPcNRR7pKcwu5iSJQMxbWkjhb7yA4AACAPwAAgD8zl+i79vQvumIljzoGix21NjulOTr3pbkAAIA/AACAP02WF70puEO63XOdujcf2TU/ApU6LWC1OQAAgD8AAIA/zTySPOx5vrkmOWg6hpQ9NaW3qbriGoe5AACAPwAAgD9mhhm7w3FFuj7D/jw/juC1tq70uVyryLQAAIA/AACAPzPXkzuPpki6FZ12ulrhPbZS5pQ6Y4mNOQAAgD8AAIA/zTTcPMOBQbpnizy6YYn4NSClibtleFo5AACAPwAAgD9mqpC7SEHHuJWLcTramh02/NYWul3FITUAAIA/AACAP83U4rvDKV26Egf4uWkJlzVd9Aq6sgIROQAAgD8AAIA/mok2u649l7r4NQA6iYDcM2aT2LrvchK5AACAPwAAgD+Ai4+9FMiZuv6WBzwV9Tc2EY+2uh6kMTUAAIA/AACAP9rH0b2kGYM99oFRPpRUbr6nuUM9S2OoPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.007103999999999999,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIrtUe9kI+XkCUhpRSlIwBbJRN6AOMAXSUR0CkcXYd6sySdX2UKGgGaAloD0MIwM5Nm/EwZkCUhpRSlGgVTegDaBZHQKRyveqJdjZ1fZQoaAZoCWgPQwgq4nSSrVtmQJSGlFKUaBVN6ANoFkdApHNJ19v0iHV9lChoBmgJaA9DCJLOwMjLAmNAlIaUUpRoFU3oA2gWR0CkdJFvQ4S6dX2UKGgGaAloD0MIfF9cqtK0XECUhpRSlGgVTegDaBZHQKR1UxJul411fZQoaAZoCWgPQwjUYYVbPrxcQJSGlFKUaBVN6ANoFkdApHdp8MNMG3V9lChoBmgJaA9DCHpx4qud/WJAlIaUUpRoFU3oA2gWR0CkeFU8/2TQdX2UKGgGaAloD0MI9KPhlLn4ZECUhpRSlGgVTegDaBZHQKR4+/47A+J1fZQoaAZoCWgPQwgWTtL8MbdlQJSGlFKUaBVN6ANoFkdApHmaGetjkXV9lChoBmgJaA9DCNzVq8joiWJAlIaUUpRoFU3oA2gWR0CkepYWcjJNdX2UKGgGaAloD0MI5SoWvyniR0CUhpRSlGgVS95oFkdApHvcNFz+33V9lChoBmgJaA9DCEz+J393uGJAlIaUUpRoFU3oA2gWR0CkfADB/I8ydX2UKGgGaAloD0MIPC8VG/PpZECUhpRSlGgVTegDaBZHQKR80yzolld1fZQoaAZoCWgPQwjaxwp+G+FQQJSGlFKUaBVLqWgWR0CkfN9SMtK7dX2UKGgGaAloD0MIfnN/9bg2ZECUhpRSlGgVTegDaBZHQKR96NedCmd1fZQoaAZoCWgPQwgKvmn67KRlQJSGlFKUaBVN6ANoFkdApH/cgr6LwXV9lChoBmgJaA9DCKaBH9UwNmdAlIaUUpRoFU3oA2gWR0CkgDTLfUF0dX2UKGgGaAloD0MIMSb9vRQ7VkCUhpRSlGgVS71oFkdApICO4EwFknV9lChoBmgJaA9DCCYeUDZlGWFAlIaUUpRoFU3oA2gWR0CkjVdq+JxedX2UKGgGaAloD0MIlYJuL2kLZkCUhpRSlGgVTegDaBZHQKSPpUgjhUB1fZQoaAZoCWgPQwi2oWKcv4BiQJSGlFKUaBVN6ANoFkdApJDY4yXUpnV9lChoBmgJaA9DCJFI2/gTfWNAlIaUUpRoFU3oA2gWR0CkkUzodMkAdX2UKGgGaAloD0MISUvl7QhiZUCUhpRSlGgVTegDaBZHQKSSda8pTdd1fZQoaAZoCWgPQwj1hZDz/lBbQJSGlFKUaBVN6ANoFkdApJUJmf5DZ3V9lChoBmgJaA9DCAiUTblCrWRAlIaUUpRoFU3oA2gWR0CklpPgm7aqdX2UKGgGaAloD0MIhuXPt4UWZUCUhpRSlGgVTegDaBZHQKSXQyHEdeZ1fZQoaAZoCWgPQwgX2c7304FmQJSGlFKUaBVN6ANoFkdApJhKdMCcPXV9lChoBmgJaA9DCISEKF/QPGNAlIaUUpRoFU3oA2gWR0Cksyrf+CK8dX2UKGgGaAloD0MIwMx38BNWYECUhpRSlGgVTegDaBZHQKS0SK+BYmt1fZQoaAZoCWgPQwis/3OYL/hjQJSGlFKUaBVN6ANoFkdApLRXEsJ6Y3V9lChoBmgJaA9DCOcYkL1eXWJAlIaUUpRoFU3oA2gWR0CktWzisGPgdX2UKGgGaAloD0MIc/IiE/DWZECUhpRSlGgVTegDaBZHQKS3eQFLWZt1fZQoaAZoCWgPQwjxSpLn+ilhQJSGlFKUaBVN6ANoFkdApLfNlPJq7HV9lChoBmgJaA9DCFbSim8oG2JAlIaUUpRoFU3oA2gWR0CkuCadc0LudX2UKGgGaAloD0MIA5fHmpG6WECUhpRSlGgVTegDaBZHQKTEdV4HHFR1fZQoaAZoCWgPQwgoZVJDG2deQJSGlFKUaBVN6ANoFkdApMa4bbUPQXV9lChoBmgJaA9DCIavr3UpjmFAlIaUUpRoFU3oA2gWR0Ckx9SLhrFgdX2UKGgGaAloD0MI7MA5I8rWZUCUhpRSlGgVTegDaBZHQKTISk2xY7t1fZQoaAZoCWgPQwjXoC+9/a5gQJSGlFKUaBVN6ANoFkdApMliJGe+VXV9lChoBmgJaA9DCGO4OgDiV1xAlIaUUpRoFU3oA2gWR0Cky+oVM23sdX2UKGgGaAloD0MIcyzvqgchXUCUhpRSlGgVTegDaBZHQKTNdoePq9p1fZQoaAZoCWgPQwhfYFYo0npfQJSGlFKUaBVN6ANoFkdApM4lgOSW7nV9lChoBmgJaA9DCF/Rrdf0s2JAlIaUUpRoFU3oA2gWR0CkzzGLUCq7dX2UKGgGaAloD0MIT6+UZQi+ZECUhpRSlGgVTegDaBZHQKTQhx4IKMN1fZQoaAZoCWgPQwiV88XeiwFkQJSGlFKUaBVN6ANoFkdApNGZTn7pFHV9lChoBmgJaA9DCLQEGQEVimNAlIaUUpRoFU3oA2gWR0Ck0acjRlYmdX2UKGgGaAloD0MI3PY96q9SYECUhpRSlGgVTegDaBZHQKTS0IYWLxZ1fZQoaAZoCWgPQwh2pPrOL/hhQJSGlFKUaBVN6ANoFkdApNUOmJm/WXV9lChoBmgJaA9DCGHB/YCHaWBAlIaUUpRoFU3oA2gWR0Ck1Wqh11W9dX2UKGgGaAloD0MIaXIxBtZLZECUhpRSlGgVTegDaBZHQKTVzo7FKkF1fZQoaAZoCWgPQwg0+PvF7OpgQJSGlFKUaBVN6ANoFkdApOODFMqSYHV9lChoBmgJaA9DCHbicrwCR2RAlIaUUpRoFU3oA2gWR0Ck5lC+10DEdX2UKGgGaAloD0MImrLTD+oxYUCUhpRSlGgVTegDaBZHQKTnp9S/CZZ1fZQoaAZoCWgPQwjPgeUIGTFnQJSGlFKUaBVN6ANoFkdApOg5FCswL3V9lChoBmgJaA9DCIDxDBr6j11AlIaUUpRoFU3oA2gWR0Ck6YubZvkzdX2UKGgGaAloD0MIWi+GcqLxYUCUhpRSlGgVTegDaBZHQKTskGA08/51fZQoaAZoCWgPQwi/R/31CoNkQJSGlFKUaBVN6ANoFkdApO5FupCKJnV9lChoBmgJaA9DCO4G0VrRIGNAlIaUUpRoFU3oA2gWR0Ck7whDgIhRdX2UKGgGaAloD0MIgXfy6THtY0CUhpRSlGgVTegDaBZHQKTwQNp/PPd1fZQoaAZoCWgPQwhZNJ2dDB9gQJSGlFKUaBVN6ANoFkdApPG5s9B8hXV9lChoBmgJaA9DCCcSTDUzSGJAlIaUUpRoFU3oA2gWR0Ck8tpRXOnmdX2UKGgGaAloD0MIZkrrbwluYkCUhpRSlGgVTegDaBZHQKTy5+YtxuN1fZQoaAZoCWgPQwhYWHA/4FhlQJSGlFKUaBVN6ANoFkdApPQDV8Ti83V9lChoBmgJaA9DCFn60AX1PmFAlIaUUpRoFU3oA2gWR0Ck9hJC0F8pdX2UKGgGaAloD0MIFFlrKDV7YECUhpRSlGgVTegDaBZHQKT2bE9+w1R1fZQoaAZoCWgPQwgWTz3S4G1iQJSGlFKUaBVN6ANoFkdApPbNeSjgynV9lChoBmgJaA9DCMcPlUbMyVJAlIaUUpRoFUu+aBZHQKUSVI6r/851fZQoaAZoCWgPQwgY7lwYabNkQJSGlFKUaBVN6ANoFkdApR0p5E+gUXV9lChoBmgJaA9DCCz0wTI2q2ZAlIaUUpRoFU3oA2gWR0ClH8VQQ+UydX2UKGgGaAloD0MIRkHw+HbEZUCUhpRSlGgVTegDaBZHQKUhDujynUF1fZQoaAZoCWgPQwh4uB0alvZiQJSGlFKUaBVN6ANoFkdApSGVhy8zynV9lChoBmgJaA9DCOpeJ/VllGZAlIaUUpRoFU3oA2gWR0ClItqE384xdX2UKGgGaAloD0MI+gj84efJXUCUhpRSlGgVTegDaBZHQKUl2vysjml1fZQoaAZoCWgPQwiUowBRMD83QJSGlFKUaBVLvGgWR0ClJk2D6FdtdX2UKGgGaAloD0MIoWez6vO+ZUCUhpRSlGgVTegDaBZHQKUniWoFV1h1fZQoaAZoCWgPQwjnHafoSMdlQJSGlFKUaBVN6ANoFkdApShCsbNr03V9lChoBmgJaA9DCDkpzHuc92NAlIaUUpRoFU3oA2gWR0ClKVeHi3ocdX2UKGgGaAloD0MIjWK5pVWVYECUhpRSlGgVTegDaBZHQKUquG21D0F1fZQoaAZoCWgPQwj9E1ysKP9kQJSGlFKUaBVN6ANoFkdApSvHJDE3sHV9lChoBmgJaA9DCKHXn8Tnc2ZAlIaUUpRoFU3oA2gWR0ClK9WeYlY2dX2UKGgGaAloD0MIPIbHfhaXYkCUhpRSlGgVTegDaBZHQKUvRbypaRp1fZQoaAZoCWgPQwhrnE1HAIBlQJSGlFKUaBVN6ANoFkdApS+eqWC2+nV9lChoBmgJaA9DCNsX0Av3ImRAlIaUUpRoFU3oA2gWR0ClL/nKfWc0dX2UKGgGaAloD0MIxNDq5IyiY0CUhpRSlGgVTegDaBZHQKUx9gJkXk51fZQoaAZoCWgPQwjUnSees2BlQJSGlFKUaBVN6ANoFkdApTu4yKvV3HV9lChoBmgJaA9DCDXxDvCk5mZAlIaUUpRoFU3oA2gWR0ClPvTs6aLGdX2UKGgGaAloD0MIwmnBiz7XZUCUhpRSlGgVTegDaBZHQKU/dhTfixV1fZQoaAZoCWgPQwjWWMLamDtnQJSGlFKUaBVN6ANoFkdApUCG7L+xW3V9lChoBmgJaA9DCJ1IMNVM42dAlIaUUpRoFU3oA2gWR0ClQw2U0Nz9dX2UKGgGaAloD0MI28LzUrGfYUCUhpRSlGgVTegDaBZHQKVDcE/0NBp1fZQoaAZoCWgPQwilgoqq3/1jQJSGlFKUaBVN6ANoFkdApURy6+WWyHV9lChoBmgJaA9DCCGunL0zv2VAlIaUUpRoFU3oA2gWR0ClRQaTGHYZdX2UKGgGaAloD0MIG7rZHyhFZUCUhpRSlGgVTegDaBZHQKVF3x5s0pF1fZQoaAZoCWgPQwh64jlbQAdnQJSGlFKUaBVN6ANoFkdApUb0cn3L3nV9lChoBmgJaA9DCK/sgsG1vGFAlIaUUpRoFU3oA2gWR0ClR9r5RCQcdX2UKGgGaAloD0MIZJKRs7AyX0CUhpRSlGgVTegDaBZHQKVH532VVxV1fZQoaAZoCWgPQwhZiXlWUhplQJSGlFKUaBVN6ANoFkdApUraT8pCr3V9lChoBmgJaA9DCHl0IyyqDGVAlIaUUpRoFU3oA2gWR0ClSy7ROUMYdX2UKGgGaAloD0MIoYFYNvPhZ0CUhpRSlGgVTegDaBZHQKVLj0qYqoZ1fZQoaAZoCWgPQwhJTFDDNw9lQJSGlFKUaBVN6ANoFkdApU2a/GlyinVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 252,
79
+ "n_steps": 2248,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.99,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.7,
84
+ "max_grad_norm": 9,
85
+ "batch_size": 125,
86
+ "n_epochs": 9,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:984dedeb77b0cdeb6ae3f6c2d00fd2e6a74a864a6cc6689e76dce12ef60ef62a
3
+ size 87929
ppo-LunarLander-v2-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3b028a764a02ddd2538ffae4da0c0d14fd10f9a16d8b70f267fe476f4b938fe
3
+ size 43201
ppo-LunarLander-v2-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (219 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 268.8952120541794, "std_reward": 9.805277498736903, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-09T15:59:37.989652"}