Nelsonlin0321
commited on
Commit
·
cf5eb72
1
Parent(s):
5a2e565
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.24 +/- 0.39
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76e874fd50c649b733955e29c8069677d7a1ace86ffc688104ceb37df8dacb4c
|
3 |
+
size 108023
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f6575760550>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f6575758d50>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1678242786279581863,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAq5/PPuuUnryA6QE/q5/PPuuUnryA6QE/q5/PPuuUnryA6QE/q5/PPuuUnryA6QE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAm9rQPmEErb42X+0+kg1yP75KJD/Sd7c/8vcDvw7U2b/rVTu/nsUqvo/zLD+ZEL+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACrn88+65SevIDpAT/0yks8zp0tuw0j3Durn88+65SevIDpAT/0yks8zp0tuw0j3Durn88+65SevIDpAT/0yks8zp0tuw0j3Durn88+65SevIDpAT/0yks8zp0tuw0j3DuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.40551504 -0.01935812 0.5074692 ]\n [ 0.40551504 -0.01935812 0.5074692 ]\n [ 0.40551504 -0.01935812 0.5074692 ]\n [ 0.40551504 -0.01935812 0.5074692 ]]",
|
60 |
+
"desired_goal": "[[ 0.40791783 -0.33792403 0.46361703]\n [ 0.94551957 0.6417655 1.4333441 ]\n [-0.5155021 -1.7017839 -0.73177975]\n [-0.16676947 0.6755914 -1.492694 ]]",
|
61 |
+
"observation": "[[ 0.40551504 -0.01935812 0.5074692 0.01243852 -0.00264918 0.00671805]\n [ 0.40551504 -0.01935812 0.5074692 0.01243852 -0.00264918 0.00671805]\n [ 0.40551504 -0.01935812 0.5074692 0.01243852 -0.00264918 0.00671805]\n [ 0.40551504 -0.01935812 0.5074692 0.01243852 -0.00264918 0.00671805]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAf9kDveRltTyoWds8mHFvvOEzszv/44E+omeGvaaoDz7R58I9jpqHPSU5Dj51duw9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.03218984 0.02214331 0.02677615]\n [-0.01461449 0.00546883 0.2536926 ]\n [-0.06562735 0.14029178 0.09516872]\n [ 0.06621276 0.13888986 0.11546031]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1jVaDvSQ8b+UhpRSlIwBbJRLMowBdJRHQKujZ9DQZ4x1fZQoaAZoCWgPQwimYfiImBLpv5SGlFKUaBVLMmgWR0CroyYyoGY8dX2UKGgGaAloD0MIVwVqMXiYyL+UhpRSlGgVSzJoFkdAq6LZRwZOz3V9lChoBmgJaA9DCLLYJhWNNeq/lIaUUpRoFUsyaBZHQKuil0VafSR1fZQoaAZoCWgPQwgX9N4YAoDiv5SGlFKUaBVLMmgWR0CrpK+jua4MdX2UKGgGaAloD0MIu9bep6rQ0r+UhpRSlGgVSzJoFkdAq6RuJrLyMHV9lChoBmgJaA9DCPXb14Fzxue/lIaUUpRoFUsyaBZHQKukITSsr/d1fZQoaAZoCWgPQwgnEeFfBI3av5SGlFKUaBVLMmgWR0Cro993bEgodX2UKGgGaAloD0MInIu/7QkS4r+UhpRSlGgVSzJoFkdAq6XsguAZsXV9lChoBmgJaA9DCEQYP417c+C/lIaUUpRoFUsyaBZHQKulqwwCbMJ1fZQoaAZoCWgPQwgUev1JfG7rv5SGlFKUaBVLMmgWR0CrpV4NiH6/dX2UKGgGaAloD0MIUvLqHAOy0L+UhpRSlGgVSzJoFkdAq6Ub+kxh2HV9lChoBmgJaA9DCHgnnx7bMt2/lIaUUpRoFUsyaBZHQKunKKXOW0J1fZQoaAZoCWgPQwih+DHmrmXzv5SGlFKUaBVLMmgWR0Crpuc1O0swdX2UKGgGaAloD0MI9lymJsGb57+UhpRSlGgVSzJoFkdAq6aaWszVMHV9lChoBmgJaA9DCIaNsn4zse6/lIaUUpRoFUsyaBZHQKumWGnn+yZ1fZQoaAZoCWgPQwjI7gIlBRbWv5SGlFKUaBVLMmgWR0CrqHOVopQUdX2UKGgGaAloD0MICwxZ3eo53r+UhpRSlGgVSzJoFkdAq6gyJZW7v3V9lChoBmgJaA9DCM+hDFUxFe2/lIaUUpRoFUsyaBZHQKun5TwUg0V1fZQoaAZoCWgPQwjp7c9FQ8bWv5SGlFKUaBVLMmgWR0Crp6Nm16VudX2UKGgGaAloD0MIaFn3j4Vo9r+UhpRSlGgVSzJoFkdAq6m4yfthNXV9lChoBmgJaA9DCIIAGTp2UO+/lIaUUpRoFUsyaBZHQKupd2nKnvV1fZQoaAZoCWgPQwjTbB6Hwfzqv5SGlFKUaBVLMmgWR0CrqSpiRW92dX2UKGgGaAloD0MIW7OVl/wP+7+UhpRSlGgVSzJoFkdAq6joh8pkPXV9lChoBmgJaA9DCKWCiqpf6eW/lIaUUpRoFUsyaBZHQKurBrEcbR51fZQoaAZoCWgPQwikcajfhS3mv5SGlFKUaBVLMmgWR0CrqsUygwoLdX2UKGgGaAloD0MIF2cMc4K24b+UhpRSlGgVSzJoFkdAq6p4iC8OC3V9lChoBmgJaA9DCGMl5llJq+q/lIaUUpRoFUsyaBZHQKuqN0jC53F1fZQoaAZoCWgPQwgoRpbMsbzkv5SGlFKUaBVLMmgWR0CrrFpIlMRIdX2UKGgGaAloD0MIotReRNsx8r+UhpRSlGgVSzJoFkdAq6wY4n4O+nV9lChoBmgJaA9DCE6c3O9QFN2/lIaUUpRoFUsyaBZHQKurzBTn7pF1fZQoaAZoCWgPQwhflQuVfy3ov5SGlFKUaBVLMmgWR0Crq4o0hvBKdX2UKGgGaAloD0MImNu93CdH47+UhpRSlGgVSzJoFkdAq62iuEEkjXV9lChoBmgJaA9DCH3sLlBS4OO/lIaUUpRoFUsyaBZHQKutYUFB6a91fZQoaAZoCWgPQwig+3Jmu0Llv5SGlFKUaBVLMmgWR0CrrRQfZElWdX2UKGgGaAloD0MI/I9Mh05P4b+UhpRSlGgVSzJoFkdAq6zSMefZmXV9lChoBmgJaA9DCFfQtMTKaNq/lIaUUpRoFUsyaBZHQKuu+FBY3eh1fZQoaAZoCWgPQwjw+WGE8Gjgv5SGlFKUaBVLMmgWR0CrrrcI7eVLdX2UKGgGaAloD0MI/5O/e0eN57+UhpRSlGgVSzJoFkdAq65q3mV7hXV9lChoBmgJaA9DCIKsp1ZfHfK/lIaUUpRoFUsyaBZHQKuuKe4Cp3p1fZQoaAZoCWgPQwjGv8+4cCDYv5SGlFKUaBVLMmgWR0CrsDZlWfbsdX2UKGgGaAloD0MIHOxNDMlJ4L+UhpRSlGgVSzJoFkdAq6/05CF9KHV9lChoBmgJaA9DCKkvSzs1l+y/lIaUUpRoFUsyaBZHQKuvp/zasZJ1fZQoaAZoCWgPQwhuhbAaS9jxv5SGlFKUaBVLMmgWR0Crr2Ymb9ZSdX2UKGgGaAloD0MIjiCVYkfj1r+UhpRSlGgVSzJoFkdAq7F7nTy8SXV9lChoBmgJaA9DCEXzABb59eS/lIaUUpRoFUsyaBZHQKuxOjY7JXB1fZQoaAZoCWgPQwhAMbJkjmX0v5SGlFKUaBVLMmgWR0CrsO02UB4mdX2UKGgGaAloD0MIA2A8g4b+2r+UhpRSlGgVSzJoFkdAq7CrNY8uBnV9lChoBmgJaA9DCPs8Rnnm5eC/lIaUUpRoFUsyaBZHQKuyuDPnjhl1fZQoaAZoCWgPQwi+pZwv9t70v5SGlFKUaBVLMmgWR0CrsnbD/EOzdX2UKGgGaAloD0MIJO1GH/OB7L+UhpRSlGgVSzJoFkdAq7IprN4Z/HV9lChoBmgJaA9DCFNaf0sA/t6/lIaUUpRoFUsyaBZHQKux57w8W9F1fZQoaAZoCWgPQwjIt3cN+tLev5SGlFKUaBVLMmgWR0Crs++AmReUdX2UKGgGaAloD0MISIrIsIo34r+UhpRSlGgVSzJoFkdAq7OuCsfaH3V9lChoBmgJaA9DCApJZvUOt+2/lIaUUpRoFUsyaBZHQKuzYQxN7Bx1fZQoaAZoCWgPQwhma32R0Jbpv5SGlFKUaBVLMmgWR0Crsx8uBczJdX2UKGgGaAloD0MIkj1CzZAq27+UhpRSlGgVSzJoFkdAq7U012q1gHV9lChoBmgJaA9DCMHhBRGpKfi/lIaUUpRoFUsyaBZHQKu082uxKQJ1fZQoaAZoCWgPQwhXJ2co7vjjv5SGlFKUaBVLMmgWR0CrtKaBy0a7dX2UKGgGaAloD0MIp1zhXS7i3L+UhpRSlGgVSzJoFkdAq7RkchkiEHV9lChoBmgJaA9DCHTPukbLgeO/lIaUUpRoFUsyaBZHQKu2pIT4+KV1fZQoaAZoCWgPQwiC5nPudj3vv5SGlFKUaBVLMmgWR0CrtmRl6JIldX2UKGgGaAloD0MIaAWGrG7127+UhpRSlGgVSzJoFkdAq7YYxgy/K3V9lChoBmgJaA9DCCV5ru/DweK/lIaUUpRoFUsyaBZHQKu12Ad4mkZ1fZQoaAZoCWgPQwiBzM6id+r5v5SGlFKUaBVLMmgWR0CruMeEytV8dX2UKGgGaAloD0MI/cHAc+/h5b+UhpRSlGgVSzJoFkdAq7iHMKTjenV9lChoBmgJaA9DCHKmCdtPxtm/lIaUUpRoFUsyaBZHQKu4O08eS0V1fZQoaAZoCWgPQwiFl+DUB1Lyv5SGlFKUaBVLMmgWR0Crt/sd92HMdX2UKGgGaAloD0MILXx9rUsN8L+UhpRSlGgVSzJoFkdAq7rmFBY3enV9lChoBmgJaA9DCEfp0r8kVfK/lIaUUpRoFUsyaBZHQKu6pU4rBj51fZQoaAZoCWgPQwhwfO2ZJQHjv5SGlFKUaBVLMmgWR0Crulk7nxJ/dX2UKGgGaAloD0MIswkwLH++57+UhpRSlGgVSzJoFkdAq7oYXXRPXXV9lChoBmgJaA9DCDuscMtHUvC/lIaUUpRoFUsyaBZHQKu9EBMi8nN1fZQoaAZoCWgPQwj51of1Rm3xv5SGlFKUaBVLMmgWR0CrvM/jCHh1dX2UKGgGaAloD0MIyEW1iCgm37+UhpRSlGgVSzJoFkdAq7yEBsANonV9lChoBmgJaA9DCC52+6wyU+O/lIaUUpRoFUsyaBZHQKu8QxfOUt91fZQoaAZoCWgPQwhaETXR5yPov5SGlFKUaBVLMmgWR0Crvze6Ae7udX2UKGgGaAloD0MInKIjufwH4r+UhpRSlGgVSzJoFkdAq773V7Qb/HV9lChoBmgJaA9DCAw9YvTcwua/lIaUUpRoFUsyaBZHQKu+q5J9RaZ1fZQoaAZoCWgPQwgkCcIVUKjyv5SGlFKUaBVLMmgWR0Crvmrl/6O6dX2UKGgGaAloD0MI647FNqlo5r+UhpRSlGgVSzJoFkdAq8Faol2NenV9lChoBmgJaA9DCKM+yR02keK/lIaUUpRoFUsyaBZHQKvBGk3S8ap1fZQoaAZoCWgPQwghPxu5bsrhv5SGlFKUaBVLMmgWR0CrwM5zxPO6dX2UKGgGaAloD0MIMWDJVSx+7L+UhpRSlGgVSzJoFkdAq8CNehPCVXV9lChoBmgJaA9DCA/Tvrm/eu2/lIaUUpRoFUsyaBZHQKvDC/i5uqF1fZQoaAZoCWgPQwi7Cik/qfbwv5SGlFKUaBVLMmgWR0Crwsp+MIeHdX2UKGgGaAloD0MI34lZL4by47+UhpRSlGgVSzJoFkdAq8J9j/dZaHV9lChoBmgJaA9DCMI0DB8RU+S/lIaUUpRoFUsyaBZHQKvCO5NGmUJ1fZQoaAZoCWgPQwjWj03yI/73v5SGlFKUaBVLMmgWR0CrxEkXcgyNdX2UKGgGaAloD0MIGvfmN0x08r+UhpRSlGgVSzJoFkdAq8QHo3aSLnV9lChoBmgJaA9DCIV5jzNN2PW/lIaUUpRoFUsyaBZHQKvDurvLHMl1fZQoaAZoCWgPQwhwB+qUR7f4v5SGlFKUaBVLMmgWR0Crw3jLjghsdX2UKGgGaAloD0MIOrLyy2CM17+UhpRSlGgVSzJoFkdAq8WIP5HmR3V9lChoBmgJaA9DCAsJGF3eHO+/lIaUUpRoFUsyaBZHQKvFRr+Haex1fZQoaAZoCWgPQwhHk4sxsA7mv5SGlFKUaBVLMmgWR0CrxPnB1s+FdX2UKGgGaAloD0MI3GRUGcbd9r+UhpRSlGgVSzJoFkdAq8S384xUN3V9lChoBmgJaA9DCBh7L75oj+O/lIaUUpRoFUsyaBZHQKvG0Pf8/EB1fZQoaAZoCWgPQwiz7h8L0aHgv5SGlFKUaBVLMmgWR0Crxo9nkDISdX2UKGgGaAloD0MIj2yumucI77+UhpRSlGgVSzJoFkdAq8ZCe5Fw1nV9lChoBmgJaA9DCA74/DBCePq/lIaUUpRoFUsyaBZHQKvGAKZUkv91ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:daa9085167487a84565fba360a9de42b2efce00beb996b8871a198cba8908b89
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9225cde5c5da9b78e10680adebc1e22bdc36a3e1588243db31c6aed15ca85027
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f6575760550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6575758d50>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678242786279581863, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAq5/PPuuUnryA6QE/q5/PPuuUnryA6QE/q5/PPuuUnryA6QE/q5/PPuuUnryA6QE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAm9rQPmEErb42X+0+kg1yP75KJD/Sd7c/8vcDvw7U2b/rVTu/nsUqvo/zLD+ZEL+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACrn88+65SevIDpAT/0yks8zp0tuw0j3Durn88+65SevIDpAT/0yks8zp0tuw0j3Durn88+65SevIDpAT/0yks8zp0tuw0j3Durn88+65SevIDpAT/0yks8zp0tuw0j3DuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.40551504 -0.01935812 0.5074692 ]\n [ 0.40551504 -0.01935812 0.5074692 ]\n [ 0.40551504 -0.01935812 0.5074692 ]\n [ 0.40551504 -0.01935812 0.5074692 ]]", "desired_goal": "[[ 0.40791783 -0.33792403 0.46361703]\n [ 0.94551957 0.6417655 1.4333441 ]\n [-0.5155021 -1.7017839 -0.73177975]\n [-0.16676947 0.6755914 -1.492694 ]]", "observation": "[[ 0.40551504 -0.01935812 0.5074692 0.01243852 -0.00264918 0.00671805]\n [ 0.40551504 -0.01935812 0.5074692 0.01243852 -0.00264918 0.00671805]\n [ 0.40551504 -0.01935812 0.5074692 0.01243852 -0.00264918 0.00671805]\n [ 0.40551504 -0.01935812 0.5074692 0.01243852 -0.00264918 0.00671805]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAf9kDveRltTyoWds8mHFvvOEzszv/44E+omeGvaaoDz7R58I9jpqHPSU5Dj51duw9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.03218984 0.02214331 0.02677615]\n [-0.01461449 0.00546883 0.2536926 ]\n [-0.06562735 0.14029178 0.09516872]\n [ 0.06621276 0.13888986 0.11546031]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1jVaDvSQ8b+UhpRSlIwBbJRLMowBdJRHQKujZ9DQZ4x1fZQoaAZoCWgPQwimYfiImBLpv5SGlFKUaBVLMmgWR0CroyYyoGY8dX2UKGgGaAloD0MIVwVqMXiYyL+UhpRSlGgVSzJoFkdAq6LZRwZOz3V9lChoBmgJaA9DCLLYJhWNNeq/lIaUUpRoFUsyaBZHQKuil0VafSR1fZQoaAZoCWgPQwgX9N4YAoDiv5SGlFKUaBVLMmgWR0CrpK+jua4MdX2UKGgGaAloD0MIu9bep6rQ0r+UhpRSlGgVSzJoFkdAq6RuJrLyMHV9lChoBmgJaA9DCPXb14Fzxue/lIaUUpRoFUsyaBZHQKukITSsr/d1fZQoaAZoCWgPQwgnEeFfBI3av5SGlFKUaBVLMmgWR0Cro993bEgodX2UKGgGaAloD0MInIu/7QkS4r+UhpRSlGgVSzJoFkdAq6XsguAZsXV9lChoBmgJaA9DCEQYP417c+C/lIaUUpRoFUsyaBZHQKulqwwCbMJ1fZQoaAZoCWgPQwgUev1JfG7rv5SGlFKUaBVLMmgWR0CrpV4NiH6/dX2UKGgGaAloD0MIUvLqHAOy0L+UhpRSlGgVSzJoFkdAq6Ub+kxh2HV9lChoBmgJaA9DCHgnnx7bMt2/lIaUUpRoFUsyaBZHQKunKKXOW0J1fZQoaAZoCWgPQwih+DHmrmXzv5SGlFKUaBVLMmgWR0Crpuc1O0swdX2UKGgGaAloD0MI9lymJsGb57+UhpRSlGgVSzJoFkdAq6aaWszVMHV9lChoBmgJaA9DCIaNsn4zse6/lIaUUpRoFUsyaBZHQKumWGnn+yZ1fZQoaAZoCWgPQwjI7gIlBRbWv5SGlFKUaBVLMmgWR0CrqHOVopQUdX2UKGgGaAloD0MICwxZ3eo53r+UhpRSlGgVSzJoFkdAq6gyJZW7v3V9lChoBmgJaA9DCM+hDFUxFe2/lIaUUpRoFUsyaBZHQKun5TwUg0V1fZQoaAZoCWgPQwjp7c9FQ8bWv5SGlFKUaBVLMmgWR0Crp6Nm16VudX2UKGgGaAloD0MIaFn3j4Vo9r+UhpRSlGgVSzJoFkdAq6m4yfthNXV9lChoBmgJaA9DCIIAGTp2UO+/lIaUUpRoFUsyaBZHQKupd2nKnvV1fZQoaAZoCWgPQwjTbB6Hwfzqv5SGlFKUaBVLMmgWR0CrqSpiRW92dX2UKGgGaAloD0MIW7OVl/wP+7+UhpRSlGgVSzJoFkdAq6joh8pkPXV9lChoBmgJaA9DCKWCiqpf6eW/lIaUUpRoFUsyaBZHQKurBrEcbR51fZQoaAZoCWgPQwikcajfhS3mv5SGlFKUaBVLMmgWR0CrqsUygwoLdX2UKGgGaAloD0MIF2cMc4K24b+UhpRSlGgVSzJoFkdAq6p4iC8OC3V9lChoBmgJaA9DCGMl5llJq+q/lIaUUpRoFUsyaBZHQKuqN0jC53F1fZQoaAZoCWgPQwgoRpbMsbzkv5SGlFKUaBVLMmgWR0CrrFpIlMRIdX2UKGgGaAloD0MIotReRNsx8r+UhpRSlGgVSzJoFkdAq6wY4n4O+nV9lChoBmgJaA9DCE6c3O9QFN2/lIaUUpRoFUsyaBZHQKurzBTn7pF1fZQoaAZoCWgPQwhflQuVfy3ov5SGlFKUaBVLMmgWR0Crq4o0hvBKdX2UKGgGaAloD0MImNu93CdH47+UhpRSlGgVSzJoFkdAq62iuEEkjXV9lChoBmgJaA9DCH3sLlBS4OO/lIaUUpRoFUsyaBZHQKutYUFB6a91fZQoaAZoCWgPQwig+3Jmu0Llv5SGlFKUaBVLMmgWR0CrrRQfZElWdX2UKGgGaAloD0MI/I9Mh05P4b+UhpRSlGgVSzJoFkdAq6zSMefZmXV9lChoBmgJaA9DCFfQtMTKaNq/lIaUUpRoFUsyaBZHQKuu+FBY3eh1fZQoaAZoCWgPQwjw+WGE8Gjgv5SGlFKUaBVLMmgWR0CrrrcI7eVLdX2UKGgGaAloD0MI/5O/e0eN57+UhpRSlGgVSzJoFkdAq65q3mV7hXV9lChoBmgJaA9DCIKsp1ZfHfK/lIaUUpRoFUsyaBZHQKuuKe4Cp3p1fZQoaAZoCWgPQwjGv8+4cCDYv5SGlFKUaBVLMmgWR0CrsDZlWfbsdX2UKGgGaAloD0MIHOxNDMlJ4L+UhpRSlGgVSzJoFkdAq6/05CF9KHV9lChoBmgJaA9DCKkvSzs1l+y/lIaUUpRoFUsyaBZHQKuvp/zasZJ1fZQoaAZoCWgPQwhuhbAaS9jxv5SGlFKUaBVLMmgWR0Crr2Ymb9ZSdX2UKGgGaAloD0MIjiCVYkfj1r+UhpRSlGgVSzJoFkdAq7F7nTy8SXV9lChoBmgJaA9DCEXzABb59eS/lIaUUpRoFUsyaBZHQKuxOjY7JXB1fZQoaAZoCWgPQwhAMbJkjmX0v5SGlFKUaBVLMmgWR0CrsO02UB4mdX2UKGgGaAloD0MIA2A8g4b+2r+UhpRSlGgVSzJoFkdAq7CrNY8uBnV9lChoBmgJaA9DCPs8Rnnm5eC/lIaUUpRoFUsyaBZHQKuyuDPnjhl1fZQoaAZoCWgPQwi+pZwv9t70v5SGlFKUaBVLMmgWR0CrsnbD/EOzdX2UKGgGaAloD0MIJO1GH/OB7L+UhpRSlGgVSzJoFkdAq7IprN4Z/HV9lChoBmgJaA9DCFNaf0sA/t6/lIaUUpRoFUsyaBZHQKux57w8W9F1fZQoaAZoCWgPQwjIt3cN+tLev5SGlFKUaBVLMmgWR0Crs++AmReUdX2UKGgGaAloD0MISIrIsIo34r+UhpRSlGgVSzJoFkdAq7OuCsfaH3V9lChoBmgJaA9DCApJZvUOt+2/lIaUUpRoFUsyaBZHQKuzYQxN7Bx1fZQoaAZoCWgPQwhma32R0Jbpv5SGlFKUaBVLMmgWR0Crsx8uBczJdX2UKGgGaAloD0MIkj1CzZAq27+UhpRSlGgVSzJoFkdAq7U012q1gHV9lChoBmgJaA9DCMHhBRGpKfi/lIaUUpRoFUsyaBZHQKu082uxKQJ1fZQoaAZoCWgPQwhXJ2co7vjjv5SGlFKUaBVLMmgWR0CrtKaBy0a7dX2UKGgGaAloD0MIp1zhXS7i3L+UhpRSlGgVSzJoFkdAq7RkchkiEHV9lChoBmgJaA9DCHTPukbLgeO/lIaUUpRoFUsyaBZHQKu2pIT4+KV1fZQoaAZoCWgPQwiC5nPudj3vv5SGlFKUaBVLMmgWR0CrtmRl6JIldX2UKGgGaAloD0MIaAWGrG7127+UhpRSlGgVSzJoFkdAq7YYxgy/K3V9lChoBmgJaA9DCCV5ru/DweK/lIaUUpRoFUsyaBZHQKu12Ad4mkZ1fZQoaAZoCWgPQwiBzM6id+r5v5SGlFKUaBVLMmgWR0CruMeEytV8dX2UKGgGaAloD0MI/cHAc+/h5b+UhpRSlGgVSzJoFkdAq7iHMKTjenV9lChoBmgJaA9DCHKmCdtPxtm/lIaUUpRoFUsyaBZHQKu4O08eS0V1fZQoaAZoCWgPQwiFl+DUB1Lyv5SGlFKUaBVLMmgWR0Crt/sd92HMdX2UKGgGaAloD0MILXx9rUsN8L+UhpRSlGgVSzJoFkdAq7rmFBY3enV9lChoBmgJaA9DCEfp0r8kVfK/lIaUUpRoFUsyaBZHQKu6pU4rBj51fZQoaAZoCWgPQwhwfO2ZJQHjv5SGlFKUaBVLMmgWR0Crulk7nxJ/dX2UKGgGaAloD0MIswkwLH++57+UhpRSlGgVSzJoFkdAq7oYXXRPXXV9lChoBmgJaA9DCDuscMtHUvC/lIaUUpRoFUsyaBZHQKu9EBMi8nN1fZQoaAZoCWgPQwj51of1Rm3xv5SGlFKUaBVLMmgWR0CrvM/jCHh1dX2UKGgGaAloD0MIyEW1iCgm37+UhpRSlGgVSzJoFkdAq7yEBsANonV9lChoBmgJaA9DCC52+6wyU+O/lIaUUpRoFUsyaBZHQKu8QxfOUt91fZQoaAZoCWgPQwhaETXR5yPov5SGlFKUaBVLMmgWR0Crvze6Ae7udX2UKGgGaAloD0MInKIjufwH4r+UhpRSlGgVSzJoFkdAq773V7Qb/HV9lChoBmgJaA9DCAw9YvTcwua/lIaUUpRoFUsyaBZHQKu+q5J9RaZ1fZQoaAZoCWgPQwgkCcIVUKjyv5SGlFKUaBVLMmgWR0Crvmrl/6O6dX2UKGgGaAloD0MI647FNqlo5r+UhpRSlGgVSzJoFkdAq8Faol2NenV9lChoBmgJaA9DCKM+yR02keK/lIaUUpRoFUsyaBZHQKvBGk3S8ap1fZQoaAZoCWgPQwghPxu5bsrhv5SGlFKUaBVLMmgWR0CrwM5zxPO6dX2UKGgGaAloD0MIMWDJVSx+7L+UhpRSlGgVSzJoFkdAq8CNehPCVXV9lChoBmgJaA9DCA/Tvrm/eu2/lIaUUpRoFUsyaBZHQKvDC/i5uqF1fZQoaAZoCWgPQwi7Cik/qfbwv5SGlFKUaBVLMmgWR0Crwsp+MIeHdX2UKGgGaAloD0MI34lZL4by47+UhpRSlGgVSzJoFkdAq8J9j/dZaHV9lChoBmgJaA9DCMI0DB8RU+S/lIaUUpRoFUsyaBZHQKvCO5NGmUJ1fZQoaAZoCWgPQwjWj03yI/73v5SGlFKUaBVLMmgWR0CrxEkXcgyNdX2UKGgGaAloD0MIGvfmN0x08r+UhpRSlGgVSzJoFkdAq8QHo3aSLnV9lChoBmgJaA9DCIV5jzNN2PW/lIaUUpRoFUsyaBZHQKvDurvLHMl1fZQoaAZoCWgPQwhwB+qUR7f4v5SGlFKUaBVLMmgWR0Crw3jLjghsdX2UKGgGaAloD0MIOrLyy2CM17+UhpRSlGgVSzJoFkdAq8WIP5HmR3V9lChoBmgJaA9DCAsJGF3eHO+/lIaUUpRoFUsyaBZHQKvFRr+Haex1fZQoaAZoCWgPQwhHk4sxsA7mv5SGlFKUaBVLMmgWR0CrxPnB1s+FdX2UKGgGaAloD0MI3GRUGcbd9r+UhpRSlGgVSzJoFkdAq8S384xUN3V9lChoBmgJaA9DCBh7L75oj+O/lIaUUpRoFUsyaBZHQKvG0Pf8/EB1fZQoaAZoCWgPQwiz7h8L0aHgv5SGlFKUaBVLMmgWR0Crxo9nkDISdX2UKGgGaAloD0MIj2yumucI77+UhpRSlGgVSzJoFkdAq8ZCe5Fw1nV9lChoBmgJaA9DCA74/DBCePq/lIaUUpRoFUsyaBZHQKvGAKZUkv91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (313 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.2398077822756022, "std_reward": 0.3911191717895447, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-08T03:32:25.657909"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34e0880635f8eb681070edb53bfa6ec42c22eea7fd49d68e13af88629fa2c798
|
3 |
+
size 3056
|