Kevin King commited on
Commit
663051b
·
1 Parent(s): 96d3f5e

Upload My Trained PPO Agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -206.49 +/- 91.62
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 283.41 +/- 17.93
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f14cf7cf130>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f14cf7cf1c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f14cf7cf250>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f14cf7cf2e0>", "_build": "<function ActorCriticPolicy._build at 0x7f14cf7cf370>", "forward": "<function ActorCriticPolicy.forward at 0x7f14cf7cf400>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f14cf7cf490>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f14cf7cf520>", "_predict": "<function ActorCriticPolicy._predict at 0x7f14cf7cf5b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f14cf7cf640>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f14cf7cf6d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f14cf7cf760>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f14cf7d1cc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683764452387518412, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAN1n5D4HUZY/g+/wPqyxUL8YH5I+nraVPgAAAAAAAAAAU1URviOVfj+kzZy+5nc3vxqQKD0o24+9AAAAAAAAAAAAZdk9fKjvPnJUdT6QdaC/OI21voq0pL0AAAAAAAAAAJrFZr0hkqU/+NkCv1nxA782VLw9FsdxPgAAAAAAAAAA/X/FPiWBED8vzEY/0N+Qv07UM76qdCo+AAAAAAAAAACtQHs+Q9+KP6Us2D6x5mO/yK/TvjZEH74AAAAAAAAAAIDzAL4N08I/jhWhvl9DEL4ZGaQ9nJq4PQAAAAAAAAAAUGRQvvpVWj/I8bW+kNZgvz4hoz0Ir3U+AAAAAAAAAACGDuW+8xJBP3HqKr+AoVa/SiuGPfWRk74AAAAAAAAAAMWrwb69eDY+zJ0qv+8Pg78hBf8+Cs3fPQAAAAAAAIA/LaUfPqHfmj/zKhY/9lrhvg1rGL7HRTW+AAAAAAAAAADN/Nw6EGu1P1LbLj6q2pE+QS7/ulRuHr0AAAAAAAAAAM3MOLpD+L4/x48qusPR5z5iHOQ89oO2PQAAAAAAAAAAACikOyi/rj9eQoc9h7rPvpmWTjya89M9AAAAAAAAAACaEPW8PNpxPzoXbDxgfRK/vQOtvG6DOD0AAAAAAAAAAM1N5LwcXYE/LnvtvUPrOb9aGK29kKuTvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAQAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.6384000000000001, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwHTaZKe05U+MAWyUS22MAXSUR0Bk38IAwPAgdX2UKGgGR8B6d0HAymALaAdLaGgIR0Bk37Bj4HopdX2UKGgGR8BkmJEF4cFRaAdLPGgIR0Bk32KhtcfOdX2UKGgGR8BUuPT9bX6JaAdLV2gIR0Bk40/OdGy5dX2UKGgGR8BpUykVN5+paAdLcWgIR0Bk5F83Mpw0dX2UKGgGR8Bh3TZ+QU5/aAdLb2gIR0Bk5uYBvJiidX2UKGgGR8BdLLw4KhL5aAdLbWgIR0Bk5oVGkN4JdX2UKGgGR8BWBwmmce8xaAdLQGgIR0Bk5tMAWBSUdX2UKGgGR8Bl5Mt/WlMzaAdLTWgIR0Bk5neaa1CxdX2UKGgGR8BjXSC8OCoTaAdLe2gIR0Bk6BBsyi22dX2UKGgGR8BnR0A7xNItaAdLZmgIR0Bk55oh6jWTdX2UKGgGR8BNKmgBcRlIaAdLQ2gIR0Bk6ACGN70GdX2UKGgGR8B+62BGx2SuaAdLZ2gIR0Bk6RW912aEdX2UKGgGR8B9kXXtjTa1aAdLXmgIR0Bk6R/qgRK6dX2UKGgGR8BaId21UlzEaAdLe2gIR0Bk6UriEQGwdX2UKGgGR8Bw692ECeVcaAdLTGgIR0Bk6XMnqmj1dX2UKGgGR8Bg3hrULDyfaAdLZ2gIR0Bk6ViONo8IdX2UKGgGR8BoUBwsGxD9aAdLaGgIR0Bk6w3FUADJdX2UKGgGR8BZ2MoUi6g/aAdLPWgIR0Bk64xDb8FZdX2UKGgGR8Bb/AsTWXkYaAdLcmgIR0Bk7avNeMQ3dX2UKGgGR8BdQUYbbUPQaAdLXmgIR0Bk7nDej2zwdX2UKGgGR8Bap/0dzXBhaAdLSGgIR0Bk75dv863idX2UKGgGR8BZjK9K28ZlaAdLTmgIR0Bk8JpSJj2BdX2UKGgGR8BiS22sq8UVaAdLPWgIR0Bk8OmtQsPKdX2UKGgGR8BHcqa5PM0QaAdLP2gIR0Bk8RYFJQLvdX2UKGgGR8BsLzrC3w1BaAdLSWgIR0Bk8aFCb+cZdX2UKGgGR8BkZWZVn27GaAdLR2gIR0Bk8xjtoi9qdX2UKGgGR8Bfa1M23rleaAdLYWgIR0Bk9bLr5ZbIdX2UKGgGR8B0YFK7I1cdaAdLaWgIR0Bk9U3uNPxhdX2UKGgGR8ByrEmlZX+3aAdLaGgIR0Bk+HS+g13udX2UKGgGR8Be6+t0V8CxaAdLSGgIR0Bk+luejEehdX2UKGgGR8BqO1MAWBSUaAdLd2gIR0Bk+bFn7HhkdX2UKGgGR8B5EXSDyvs7aAdLiGgIR0Bk+wcDKYAsdX2UKGgGR8BynalXRw6yaAdLZWgIR0Bk/Jzo2XLNdX2UKGgGR8BhBRFspG4JaAdLeWgIR0Bk/LBGhEjPdX2UKGgGR8Bh1h+nZTQ3aAdLdWgIR0Bk/h0dRzikdX2UKGgGR8ByyuM+/xlQaAdLVmgIR0BlABl8PWhAdX2UKGgGR8BiCp44ZMtcaAdLVWgIR0BlAD7ZWaMKdX2UKGgGR8BjhpLdvbXZaAdLWGgIR0BlAPSa3I+4dX2UKGgGR8B0qct03fhuaAdLUmgIR0BlAcabWmP6dX2UKGgGR8BwShK5CngpaAdLcGgIR0BlAnA44p+ddX2UKGgGR8BiFhkmQbMpaAdLS2gIR0BlAvikwevIdX2UKGgGR8B3RnHzYmLMaAdLbWgIR0BlAwdIXj2jdX2UKGgGR8BqfIX/HYHxaAdLZWgIR0BlA4gNgBtDdX2UKGgGR8AeXOyE+PilaAdLWGgIR0BlBKPjn3cpdX2UKGgGR8BW7RBE8aGYaAdLPGgIR0BlBSsbNr0rdX2UKGgGR8BuTtmJ3xFzaAdLR2gIR0BlBaZDzAerdX2UKGgGR8BLgld9lVcVaAdLRWgIR0BlCWy5Zr57dX2UKGgGR8BsiKZtvXK9aAdLZmgIR0BlCdIbwSamdX2UKGgGR8BUKO0PYnOTaAdLO2gIR0BlCdM0xdpqdX2UKGgGR8ByJG18b70naAdLVmgIR0BlCsQRPGhmdX2UKGgGR8BrK66QNkOJaAdLb2gIR0BlDNc0Ltu2dX2UKGgGR8BpXChcqvvCaAdLX2gIR0BlDFYwIt17dX2UKGgGR8BkCQGr0aqCaAdLT2gIR0BlDrrqt5lfdX2UKGgGR8BIfc3EQ5FPaAdLRmgIR0BlDpSrHU+cdX2UKGgGR8BZ9pDRc/t6aAdLTGgIR0BlD3hKlHjIdX2UKGgGR8BbTs2FWXC1aAdLQmgIR0BlDn/rB0p3dX2UKGgGR8BU2WS+xnnMaAdLUGgIR0BlD6KP4mCzdX2UKGgGR8BhiZw84gieaAdLZmgIR0BlEQ80UGmldX2UKGgGR8B5x/mmtQsPaAdLZGgIR0BlEVeQdS2qdX2UKGgGR8BgDLW3BpHqaAdLU2gIR0BlErW07bL2dX2UKGgGR8BRgJ9qk/KRaAdLR2gIR0BlFdE9dNWVdX2UKGgGR8BkCYqLCN0eaAdLUGgIR0BlF3HLidaudX2UKGgGR8BSHALux8lYaAdLamgIR0BlFnnwG4ZudX2UKGgGR8BdPETL4etCaAdLbGgIR0BlF9pRGc4HdX2UKGgGR8BMw6jN6gM+aAdLPmgIR0BlGV/e+Eh8dX2UKGgGR8BcafHYHxBmaAdLO2gIR0BlGJazNUwSdX2UKGgGR8BdvH4wh4dIaAdLYmgIR0BlGiGrS3LFdX2UKGgGR8B0r18LKFIvaAdLW2gIR0BlHH95yEL6dX2UKGgGR8BgP1VzZHuraAdLaWgIR0BlHMtqYZ2qdX2UKGgGR8BlC5u0kWykaAdLYWgIR0BlHRH3Dej3dX2UKGgGR8B7F5weeWfLaAdLV2gIR0BlHZHZsbeedX2UKGgGR8BfM/N/vv0AaAdLWWgIR0BlHsDwH7gsdX2UKGgGR8B5Z9b4agmJaAdLbWgIR0BlIktmL9/CdX2UKGgGR8Bt6GgxrSE2aAdLZ2gIR0BlIzrs0HhTdX2UKGgGR8Bo+F7a7EpBaAdLd2gIR0BlJbiADq4ZdX2UKGgGR8B/83posZpBaAdLVWgIR0BlJiOinHeadX2UKGgGR8BiJYOYplSTaAdLTWgIR0BlJTq+rU9ZdX2UKGgGR8Bonnu1F6RhaAdLWmgIR0BlJhEH+qBFdX2UKGgGR8Bp/KqXF98aaAdLcWgIR0BlJpt52QnydX2UKGgGR8Bmt/geii7DaAdLVWgIR0BlJ1VFQVKxdX2UKGgGR8BcCHlwLmZFaAdLc2gIR0BlKcqDsdDIdX2UKGgGR8B55posZpBYaAdLWGgIR0BlK9O2y9mIdX2UKGgGR8BoXngxagVXaAdLV2gIR0BlLCUC7sfJdX2UKGgGR8BTm5D/lyR0aAdLcmgIR0BlLSrcTJyRdX2UKGgGR8Bi1CFj/dZaaAdLWmgIR0BlLSmIj4YadX2UKGgGR8BkgOETQE6laAdLc2gIR0BlLhhpg1FZdX2UKGgGR8B4GXcO9WZJaAdLZWgIR0BlLkD4gzP9dX2UKGgGR8BYA5QP7N0OaAdLRWgIR0BlLzebd8ArdX2UKGgGR8BgwmmtQsPKaAdLTGgIR0BlL5IxxkupdX2UKGgGR8Bn8HYvnKW+aAdLPWgIR0BlMMdBBzFNdX2UKGgGR8BsCNVtGd7OaAdLPWgIR0BlL9oHs1KodX2UKGgGR8By6AYVIqb0aAdLaWgIR0BlMRRXOnl5dX2UKGgGR8BjTWwu/UONaAdLTWgIR0BlMxT/ACXAdX2UKGgGR8BjEA/zJ6ppaAdLTmgIR0BlNABxPwd9dX2UKGgGR8Bog9EkSmIkaAdLT2gIR0BlM7EUCaJAdX2UKGgGR8BcSy48U21laAdLUGgIR0BlN9kpZwGXdX2UKGgGR8B3z3KZDzAfaAdLXGgIR0BlN4FkhA4XdX2UKGgGR8BMgoOYplSTaAdLQ2gIR0BlONhE0BOpdX2UKGgGR8BxhQojOcDsaAdLPWgIR0BlOlLUTcqOdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7ad9985ab0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7ad9985b40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7ad9985bd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7ad9985c60>", "_build": "<function ActorCriticPolicy._build at 0x7f7ad9985cf0>", "forward": "<function ActorCriticPolicy.forward at 0x7f7ad9985d80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7ad9985e10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7ad9985ea0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7ad9985f30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7ad9985fc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7ad9986050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7ad99860e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7ad998d300>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683765198637044171, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbQXr2iY5U/V9yPvjNMML868p+9kA/SvQAAAAAAAAAAzaz4O6hLkD8RbxY9r7AMv+50lz3NXMG8AAAAAAAAAAAA/3s9FCKGPoKxBr4MHr2+C6LYvOxHFD0AAAAAAAAAAGaejTzk6x08ntywPnBhSr6/qZ89qticvwAAAAAAAIA/mqSzvCGDNz+ewYi9IWcVv1iZjbwtrUQ9AAAAAAAAAADN3Bm7TwdjPXWn/71MxaO+n7AhvtoACL0AAAAAAAAAADMdlT3nWI0/5kMxPgTuD7/NZEw+ZgUrPQAAAAAAAAAAGvpZPT/JUz/1TpS7i0ALvwB2AT6bqo69AAAAAAAAAAAze6U7j9UTvCG5EDv8/X48vP+GvdVtVT0AAIA/AACAPzPexbw06ZG8P3TAvIqPkr5kVUi7wOe3PgAAgD8AAIA/MzPXOXVKvz8IcRw8fONnvi02HD1dNje8AAAAAAAAAAAATi28zo9DP6jKpjxkTgy/d0AhPF6ydD0AAAAAAAAAAJrBjzxYAJ8/iGb6PXUSC79yaTs9NoZEPQAAAAAAAAAAWrb2vaRPELs2eTq80O7hO/GdJzygRdC8AAAAAAAAgD9W61C+pHJZPwZMmr5KGCy/V0TGvhAbJT0AAAAAAAAAAAAXAL175su6CaIKvNRWmTx3s5I7jqqEvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV7AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHnpN47ihqMAWyUS+WMAXSUR0CZcrovzvqkdX2UKGgGR0ApRLTx5LRKaAdLcGgIR0CZcuKgIyCWdX2UKGgGR0Bw+BBNVR1paAdLw2gIR0CZcvwlSjxkdX2UKGgGR0ByEoSFoL5RaAdL52gIR0CZcyU9ZA6ddX2UKGgGR0BxgHRBu4wzaAdL1WgIR0CZc82TgVGkdX2UKGgGR0BxFUyZa3ZxaAdLvWgIR0CZdSq8UVSGdX2UKGgGR0Bv54vYe1a4aAdL6GgIR0CZdXvCMxXXdX2UKGgGR0BxuPJxNqQBaAdL3WgIR0CZdgGs3hn8dX2UKGgGR0Bxx43VCojwaAdL22gIR0CZdqUMXrMUdX2UKGgGR0BycGxFAmiQaAdL1GgIR0CZds62OQyRdX2UKGgGR0BzCXUBnzxxaAdL5mgIR0CZeAVHnU2DdX2UKGgGR0ByYRWRzRx+aAdLsWgIR0CZeaPE87p3dX2UKGgGR0BzIXZ6D5CXaAdL52gIR0CZeheEIw/QdX2UKGgGR0BwLB71Iy0saAdLxGgIR0CZeo1zySV4dX2UKGgGR0Byd1nf2saLaAdLzGgIR0CZe2lQMx46dX2UKGgGR0BzCxq20AtGaAdL8WgIR0CZe7bDdgv2dX2UKGgGR0Bwr+6iCaqkaAdL52gIR0CZe7R02cawdX2UKGgGR0BzyB8BuGbkaAdL/GgIR0CZe921UlzEdX2UKGgGR0BynsfbKzRhaAdL0GgIR0CZfHvicXnAdX2UKGgGR0Bxs9GhEjPfaAdLzWgIR0CZfJ3Mpw0gdX2UKGgGR0BxrbCfpUxVaAdLuWgIR0CZfNTuOS4fdX2UKGgGR0BzKN+z+m3waAdL3WgIR0CZfWxVQyh0dX2UKGgGR0BymHxLCemOaAdL4mgIR0CZfh+I/JNkdX2UKGgGR0BxWJw6ySmqaAdLzWgIR0CZfmV2zOX3dX2UKGgGR0Byo1z90ihWaAdLwWgIR0CZfxhd+ocadX2UKGgGR0B0F9IJ7b+MaAdL1GgIR0CZj+wM6RyPdX2UKGgGR0ByeHf779AHaAdNkAFoCEdAmZAfDDTBqXV9lChoBkdAbxk23rleW2gHS8loCEdAmZE+2E0zj3V9lChoBkdAck0v3ai9I2gHS9doCEdAmZFexfOUuHV9lChoBkdAcp9DV6NVBGgHS/VoCEdAmZFj8xbjcXV9lChoBkdAbZjqFh5PdmgHS9poCEdAmZHBwVCXyHV9lChoBkdAcTglCkXUIGgHS8loCEdAmZI4o7V8TnV9lChoBkdAcT47l7tzCGgHS+hoCEdAmZJTIq9XcXV9lChoBkdAcIqLZi/fwmgHS9NoCEdAmZJfGIbfg3V9lChoBkdAZP+t8NQTEmgHTegDaAhHQJmTNHJ9y951fZQoaAZHQHJEMcIZ62RoB0u7aAhHQJmTjs7dSEV1fZQoaAZHQHKsaGtZFG5oB0voaAhHQJmT0078vVV1fZQoaAZHQHExWZy+6AhoB0vWaAhHQJmT/0WdmQN1fZQoaAZHQHNpyJGe+VVoB00dAWgIR0CZlKGXokiVdX2UKGgGR0ByEMBBAv+PaAdL52gIR0CZlUw1BMSLdX2UKGgGR0ByFbbXYlIFaAdLxmgIR0CZlVkwvg3tdX2UKGgGR0BvTABDG96DaAdL3WgIR0CZliIV/MGHdX2UKGgGR0BwOlj+aScLaAdLwGgIR0CZlmQZGax5dX2UKGgGR0BzM5o371qWaAdL0GgIR0CZluouPFNtdX2UKGgGR0BzUhxffGdaaAdLx2gIR0CZl283++/QdX2UKGgGR0Bxe/wF1SwXaAdL42gIR0CZl8RIBikPdX2UKGgGR0BwxsXXRPXTaAdL2GgIR0CZmANQTEiudX2UKGgGR0BxVWElE7W/aAdL2GgIR0CZmA52Qnx8dX2UKGgGR0Bwn0edTYNBaAdNCAFoCEdAmZhq/RE4N3V9lChoBkdAY1Hs6aLGaWgHTegDaAhHQJmYaCUX5311fZQoaAZHQHEFs0gr6LxoB0vSaAhHQJmZUToMa0h1fZQoaAZHQHHe7n1WbPRoB0vbaAhHQJmZXeYUnG91fZQoaAZHQHHDtTP0I1NoB0v2aAhHQJmZdEXtSht1fZQoaAZHQHE66Rhc7hhoB00QAWgIR0CZmmDHwPRRdX2UKGgGR0BxKmsxO+IuaAdLzGgIR0CZmnWJrLyMdX2UKGgGR0BzIrcoH9m6aAdL0GgIR0CZmoPuG9HudX2UKGgGR0ByDi1D0DlpaAdL7WgIR0CZmpL/jsD5dX2UKGgGR0Bw2MZNwiqyaAdLwmgIR0CZmuRYzSCwdX2UKGgGR0BwQ0P1+RYBaAdL0mgIR0CZm3Fh5PdmdX2UKGgGR0BzmYCPp6hQaAdLvmgIR0CZnGltCRfXdX2UKGgGR0BxiyZNO/L1aAdLy2gIR0CZnJCf6Gg0dX2UKGgGR0BwIlYW+GoKaAdL5mgIR0CZnPZhKDkEdX2UKGgGR0Byt6LCN0eVaAdNBQFoCEdAmZ0/2PDHfnV9lChoBkdAcWS2OQyRCGgHS9xoCEdAmZ2hWYF7lnV9lChoBkdAcXAdgOSW7mgHS75oCEdAmZ3wuIyj6HV9lChoBkdAcCpZqVQhwGgHS8RoCEdAmZ4ImkWRBHV9lChoBkdAbxeqAjIJaGgHS8BoCEdAmZ4SwGGEf3V9lChoBkdAcM4Mh5gPVmgHTQIBaAhHQJmeMJSiudR1fZQoaAZHQHKa77CSA6NoB0v2aAhHQJmeOgElme11fZQoaAZHQG+vqqXF98ZoB0u+aAhHQJme71uivgZ1fZQoaAZHQG7xLLQokRloB0vOaAhHQJmfK4x1xKh1fZQoaAZHQHIALzXjENxoB0vPaAhHQJmfQT101ZV1fZQoaAZHQHDAk8RtgrpoB0vvaAhHQJmgEE9t/F11fZQoaAZHQG2Ammk30f5oB0vqaAhHQJmgTP4VRDV1fZQoaAZHQHD4/HLidatoB0voaAhHQJmg0/MW43F1fZQoaAZHQHJflk1/DtRoB0vjaAhHQJmh2RnvlU91fZQoaAZHQHN62HHmzSloB0vraAhHQJmiu9L6DXh1fZQoaAZHQHDVGVVxS51oB00CAWgIR0CZotuGsV+JdX2UKGgGR0BzN2OinHeaaAdL4mgIR0CZotwRGtp3dX2UKGgGR0Bur57NSqEOaAdL3mgIR0CZozGiYb84dX2UKGgGR0ByDUbedkJ8aAdLw2gIR0CZoy3KSxJNdX2UKGgGR0BxWDQTmGM5aAdLzWgIR0CZo2y3Td+HdX2UKGgGR0Bwl7JHRTjvaAdL4mgIR0CZo7i5d4VzdX2UKGgGR0BxipaaCtihaAdL3GgIR0CZo7gYxcmjdX2UKGgGR0BuumQuEmICaAdLw2gIR0CZpLFFUhmodX2UKGgGR0BxHwpI+W4WaAdNFgFoCEdAmaVt/axoqXV9lChoBkdAcRs83Mpw0mgHS75oCEdAmaWvuLJjlXV9lChoBkdAcu+/hESdv2gHS/VoCEdAmaXLnxJ/X3V9lChoBkdAcAzQeFL39WgHS8ZoCEdAmaY9UbT+enV9lChoBkdActZRXfZVXGgHTQMBaAhHQJmmii+L3sZ1fZQoaAZHQHKHfTPSlWRoB0u/aAhHQJmmuNdZ7ol1fZQoaAZHQHCavH93r2RoB0vMaAhHQJmpFRUFSsN1fZQoaAZHQHMnQ1vVEuxoB0vRaAhHQJmpYsXizcB1fZQoaAZHQHH7CgsbvPVoB0vTaAhHQJmpdzltCRh1fZQoaAZHQHH1NgKF7D5oB0vAaAhHQJmpwE6kqMF1fZQoaAZHQHGG/VurIYFoB0vRaAhHQJmpvRjSXt11fZQoaAZHQHB1ikGiYb9oB0vZaAhHQJmqPLGJemh1fZQoaAZHQHBgY8hcJMRoB0vQaAhHQJmqRSKm8/V1fZQoaAZHQHMNWvOhTOxoB0vtaAhHQJmqp8rqdH51fZQoaAZHQHLcxHoX9BNoB00SAWgIR0CZqq6nR9gGdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0a52b2202d794ee7660de9efc1b41954fc045206d61ae4f16d4f8572cc3a4c14
3
- size 146615
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac9c8dbdbf80729232aa7d90a6673f065ea48203fd314489b3da6248c4d1efe3
3
+ size 146639
ppo-LunarLander-v2/data CHANGED
@@ -4,54 +4,54 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f14cf7cf130>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f14cf7cf1c0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f14cf7cf250>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f14cf7cf2e0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f14cf7cf370>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f14cf7cf400>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f14cf7cf490>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f14cf7cf520>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f14cf7cf5b0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f14cf7cf640>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f14cf7cf6d0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f14cf7cf760>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7f14cf7d1cc0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
- "num_timesteps": 16384,
25
- "_total_timesteps": 10000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1683764452387518412,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAN1n5D4HUZY/g+/wPqyxUL8YH5I+nraVPgAAAAAAAAAAU1URviOVfj+kzZy+5nc3vxqQKD0o24+9AAAAAAAAAAAAZdk9fKjvPnJUdT6QdaC/OI21voq0pL0AAAAAAAAAAJrFZr0hkqU/+NkCv1nxA782VLw9FsdxPgAAAAAAAAAA/X/FPiWBED8vzEY/0N+Qv07UM76qdCo+AAAAAAAAAACtQHs+Q9+KP6Us2D6x5mO/yK/TvjZEH74AAAAAAAAAAIDzAL4N08I/jhWhvl9DEL4ZGaQ9nJq4PQAAAAAAAAAAUGRQvvpVWj/I8bW+kNZgvz4hoz0Ir3U+AAAAAAAAAACGDuW+8xJBP3HqKr+AoVa/SiuGPfWRk74AAAAAAAAAAMWrwb69eDY+zJ0qv+8Pg78hBf8+Cs3fPQAAAAAAAIA/LaUfPqHfmj/zKhY/9lrhvg1rGL7HRTW+AAAAAAAAAADN/Nw6EGu1P1LbLj6q2pE+QS7/ulRuHr0AAAAAAAAAAM3MOLpD+L4/x48qusPR5z5iHOQ89oO2PQAAAAAAAAAAACikOyi/rj9eQoc9h7rPvpmWTjya89M9AAAAAAAAAACaEPW8PNpxPzoXbDxgfRK/vQOtvG6DOD0AAAAAAAAAAM1N5LwcXYE/LnvtvUPrOb9aGK29kKuTvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
- ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAQAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
  },
40
  "_last_original_obs": null,
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
- "_current_progress_remaining": -0.6384000000000001,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwHTaZKe05U+MAWyUS22MAXSUR0Bk38IAwPAgdX2UKGgGR8B6d0HAymALaAdLaGgIR0Bk37Bj4HopdX2UKGgGR8BkmJEF4cFRaAdLPGgIR0Bk32KhtcfOdX2UKGgGR8BUuPT9bX6JaAdLV2gIR0Bk40/OdGy5dX2UKGgGR8BpUykVN5+paAdLcWgIR0Bk5F83Mpw0dX2UKGgGR8Bh3TZ+QU5/aAdLb2gIR0Bk5uYBvJiidX2UKGgGR8BdLLw4KhL5aAdLbWgIR0Bk5oVGkN4JdX2UKGgGR8BWBwmmce8xaAdLQGgIR0Bk5tMAWBSUdX2UKGgGR8Bl5Mt/WlMzaAdLTWgIR0Bk5neaa1CxdX2UKGgGR8BjXSC8OCoTaAdLe2gIR0Bk6BBsyi22dX2UKGgGR8BnR0A7xNItaAdLZmgIR0Bk55oh6jWTdX2UKGgGR8BNKmgBcRlIaAdLQ2gIR0Bk6ACGN70GdX2UKGgGR8B+62BGx2SuaAdLZ2gIR0Bk6RW912aEdX2UKGgGR8B9kXXtjTa1aAdLXmgIR0Bk6R/qgRK6dX2UKGgGR8BaId21UlzEaAdLe2gIR0Bk6UriEQGwdX2UKGgGR8Bw692ECeVcaAdLTGgIR0Bk6XMnqmj1dX2UKGgGR8Bg3hrULDyfaAdLZ2gIR0Bk6ViONo8IdX2UKGgGR8BoUBwsGxD9aAdLaGgIR0Bk6w3FUADJdX2UKGgGR8BZ2MoUi6g/aAdLPWgIR0Bk64xDb8FZdX2UKGgGR8Bb/AsTWXkYaAdLcmgIR0Bk7avNeMQ3dX2UKGgGR8BdQUYbbUPQaAdLXmgIR0Bk7nDej2zwdX2UKGgGR8Bap/0dzXBhaAdLSGgIR0Bk75dv863idX2UKGgGR8BZjK9K28ZlaAdLTmgIR0Bk8JpSJj2BdX2UKGgGR8BiS22sq8UVaAdLPWgIR0Bk8OmtQsPKdX2UKGgGR8BHcqa5PM0QaAdLP2gIR0Bk8RYFJQLvdX2UKGgGR8BsLzrC3w1BaAdLSWgIR0Bk8aFCb+cZdX2UKGgGR8BkZWZVn27GaAdLR2gIR0Bk8xjtoi9qdX2UKGgGR8Bfa1M23rleaAdLYWgIR0Bk9bLr5ZbIdX2UKGgGR8B0YFK7I1cdaAdLaWgIR0Bk9U3uNPxhdX2UKGgGR8ByrEmlZX+3aAdLaGgIR0Bk+HS+g13udX2UKGgGR8Be6+t0V8CxaAdLSGgIR0Bk+luejEehdX2UKGgGR8BqO1MAWBSUaAdLd2gIR0Bk+bFn7HhkdX2UKGgGR8B5EXSDyvs7aAdLiGgIR0Bk+wcDKYAsdX2UKGgGR8BynalXRw6yaAdLZWgIR0Bk/Jzo2XLNdX2UKGgGR8BhBRFspG4JaAdLeWgIR0Bk/LBGhEjPdX2UKGgGR8Bh1h+nZTQ3aAdLdWgIR0Bk/h0dRzikdX2UKGgGR8ByyuM+/xlQaAdLVmgIR0BlABl8PWhAdX2UKGgGR8BiCp44ZMtcaAdLVWgIR0BlAD7ZWaMKdX2UKGgGR8BjhpLdvbXZaAdLWGgIR0BlAPSa3I+4dX2UKGgGR8B0qct03fhuaAdLUmgIR0BlAcabWmP6dX2UKGgGR8BwShK5CngpaAdLcGgIR0BlAnA44p+ddX2UKGgGR8BiFhkmQbMpaAdLS2gIR0BlAvikwevIdX2UKGgGR8B3RnHzYmLMaAdLbWgIR0BlAwdIXj2jdX2UKGgGR8BqfIX/HYHxaAdLZWgIR0BlA4gNgBtDdX2UKGgGR8AeXOyE+PilaAdLWGgIR0BlBKPjn3cpdX2UKGgGR8BW7RBE8aGYaAdLPGgIR0BlBSsbNr0rdX2UKGgGR8BuTtmJ3xFzaAdLR2gIR0BlBaZDzAerdX2UKGgGR8BLgld9lVcVaAdLRWgIR0BlCWy5Zr57dX2UKGgGR8BsiKZtvXK9aAdLZmgIR0BlCdIbwSamdX2UKGgGR8BUKO0PYnOTaAdLO2gIR0BlCdM0xdpqdX2UKGgGR8ByJG18b70naAdLVmgIR0BlCsQRPGhmdX2UKGgGR8BrK66QNkOJaAdLb2gIR0BlDNc0Ltu2dX2UKGgGR8BpXChcqvvCaAdLX2gIR0BlDFYwIt17dX2UKGgGR8BkCQGr0aqCaAdLT2gIR0BlDrrqt5lfdX2UKGgGR8BIfc3EQ5FPaAdLRmgIR0BlDpSrHU+cdX2UKGgGR8BZ9pDRc/t6aAdLTGgIR0BlD3hKlHjIdX2UKGgGR8BbTs2FWXC1aAdLQmgIR0BlDn/rB0p3dX2UKGgGR8BU2WS+xnnMaAdLUGgIR0BlD6KP4mCzdX2UKGgGR8BhiZw84gieaAdLZmgIR0BlEQ80UGmldX2UKGgGR8B5x/mmtQsPaAdLZGgIR0BlEVeQdS2qdX2UKGgGR8BgDLW3BpHqaAdLU2gIR0BlErW07bL2dX2UKGgGR8BRgJ9qk/KRaAdLR2gIR0BlFdE9dNWVdX2UKGgGR8BkCYqLCN0eaAdLUGgIR0BlF3HLidaudX2UKGgGR8BSHALux8lYaAdLamgIR0BlFnnwG4ZudX2UKGgGR8BdPETL4etCaAdLbGgIR0BlF9pRGc4HdX2UKGgGR8BMw6jN6gM+aAdLPmgIR0BlGV/e+Eh8dX2UKGgGR8BcafHYHxBmaAdLO2gIR0BlGJazNUwSdX2UKGgGR8BdvH4wh4dIaAdLYmgIR0BlGiGrS3LFdX2UKGgGR8B0r18LKFIvaAdLW2gIR0BlHH95yEL6dX2UKGgGR8BgP1VzZHuraAdLaWgIR0BlHMtqYZ2qdX2UKGgGR8BlC5u0kWykaAdLYWgIR0BlHRH3Dej3dX2UKGgGR8B7F5weeWfLaAdLV2gIR0BlHZHZsbeedX2UKGgGR8BfM/N/vv0AaAdLWWgIR0BlHsDwH7gsdX2UKGgGR8B5Z9b4agmJaAdLbWgIR0BlIktmL9/CdX2UKGgGR8Bt6GgxrSE2aAdLZ2gIR0BlIzrs0HhTdX2UKGgGR8Bo+F7a7EpBaAdLd2gIR0BlJbiADq4ZdX2UKGgGR8B/83posZpBaAdLVWgIR0BlJiOinHeadX2UKGgGR8BiJYOYplSTaAdLTWgIR0BlJTq+rU9ZdX2UKGgGR8Bonnu1F6RhaAdLWmgIR0BlJhEH+qBFdX2UKGgGR8Bp/KqXF98aaAdLcWgIR0BlJpt52QnydX2UKGgGR8Bmt/geii7DaAdLVWgIR0BlJ1VFQVKxdX2UKGgGR8BcCHlwLmZFaAdLc2gIR0BlKcqDsdDIdX2UKGgGR8B55posZpBYaAdLWGgIR0BlK9O2y9mIdX2UKGgGR8BoXngxagVXaAdLV2gIR0BlLCUC7sfJdX2UKGgGR8BTm5D/lyR0aAdLcmgIR0BlLSrcTJyRdX2UKGgGR8Bi1CFj/dZaaAdLWmgIR0BlLSmIj4YadX2UKGgGR8BkgOETQE6laAdLc2gIR0BlLhhpg1FZdX2UKGgGR8B4GXcO9WZJaAdLZWgIR0BlLkD4gzP9dX2UKGgGR8BYA5QP7N0OaAdLRWgIR0BlLzebd8ArdX2UKGgGR8BgwmmtQsPKaAdLTGgIR0BlL5IxxkupdX2UKGgGR8Bn8HYvnKW+aAdLPWgIR0BlMMdBBzFNdX2UKGgGR8BsCNVtGd7OaAdLPWgIR0BlL9oHs1KodX2UKGgGR8By6AYVIqb0aAdLaWgIR0BlMRRXOnl5dX2UKGgGR8BjTWwu/UONaAdLTWgIR0BlMxT/ACXAdX2UKGgGR8BjEA/zJ6ppaAdLTmgIR0BlNABxPwd9dX2UKGgGR8Bog9EkSmIkaAdLT2gIR0BlM7EUCaJAdX2UKGgGR8BcSy48U21laAdLUGgIR0BlN9kpZwGXdX2UKGgGR8B3z3KZDzAfaAdLXGgIR0BlN4FkhA4XdX2UKGgGR8BMgoOYplSTaAdLQ2gIR0BlONhE0BOpdX2UKGgGR8BxhQojOcDsaAdLPWgIR0BlOlLUTcqOdWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 4,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7ad9985ab0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7ad9985b40>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7ad9985bd0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7ad9985c60>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f7ad9985cf0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f7ad9985d80>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7ad9985e10>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7ad9985ea0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f7ad9985f30>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7ad9985fc0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7ad9986050>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7ad99860e0>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f7ad998d300>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 2015232,
25
+ "_total_timesteps": 2000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1683765198637044171,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbQXr2iY5U/V9yPvjNMML868p+9kA/SvQAAAAAAAAAAzaz4O6hLkD8RbxY9r7AMv+50lz3NXMG8AAAAAAAAAAAA/3s9FCKGPoKxBr4MHr2+C6LYvOxHFD0AAAAAAAAAAGaejTzk6x08ntywPnBhSr6/qZ89qticvwAAAAAAAIA/mqSzvCGDNz+ewYi9IWcVv1iZjbwtrUQ9AAAAAAAAAADN3Bm7TwdjPXWn/71MxaO+n7AhvtoACL0AAAAAAAAAADMdlT3nWI0/5kMxPgTuD7/NZEw+ZgUrPQAAAAAAAAAAGvpZPT/JUz/1TpS7i0ALvwB2AT6bqo69AAAAAAAAAAAze6U7j9UTvCG5EDv8/X48vP+GvdVtVT0AAIA/AACAPzPexbw06ZG8P3TAvIqPkr5kVUi7wOe3PgAAgD8AAIA/MzPXOXVKvz8IcRw8fONnvi02HD1dNje8AAAAAAAAAAAATi28zo9DP6jKpjxkTgy/d0AhPF6ydD0AAAAAAAAAAJrBjzxYAJ8/iGb6PXUSC79yaTs9NoZEPQAAAAAAAAAAWrb2vaRPELs2eTq80O7hO/GdJzygRdC8AAAAAAAAgD9W61C+pHJZPwZMmr5KGCy/V0TGvhAbJT0AAAAAAAAAAAAXAL175su6CaIKvNRWmTx3s5I7jqqEvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
  },
40
  "_last_original_obs": null,
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.007616000000000067,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV7AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHnpN47ihqMAWyUS+WMAXSUR0CZcrovzvqkdX2UKGgGR0ApRLTx5LRKaAdLcGgIR0CZcuKgIyCWdX2UKGgGR0Bw+BBNVR1paAdLw2gIR0CZcvwlSjxkdX2UKGgGR0ByEoSFoL5RaAdL52gIR0CZcyU9ZA6ddX2UKGgGR0BxgHRBu4wzaAdL1WgIR0CZc82TgVGkdX2UKGgGR0BxFUyZa3ZxaAdLvWgIR0CZdSq8UVSGdX2UKGgGR0Bv54vYe1a4aAdL6GgIR0CZdXvCMxXXdX2UKGgGR0BxuPJxNqQBaAdL3WgIR0CZdgGs3hn8dX2UKGgGR0Bxx43VCojwaAdL22gIR0CZdqUMXrMUdX2UKGgGR0BycGxFAmiQaAdL1GgIR0CZds62OQyRdX2UKGgGR0BzCXUBnzxxaAdL5mgIR0CZeAVHnU2DdX2UKGgGR0ByYRWRzRx+aAdLsWgIR0CZeaPE87p3dX2UKGgGR0BzIXZ6D5CXaAdL52gIR0CZeheEIw/QdX2UKGgGR0BwLB71Iy0saAdLxGgIR0CZeo1zySV4dX2UKGgGR0Byd1nf2saLaAdLzGgIR0CZe2lQMx46dX2UKGgGR0BzCxq20AtGaAdL8WgIR0CZe7bDdgv2dX2UKGgGR0Bwr+6iCaqkaAdL52gIR0CZe7R02cawdX2UKGgGR0BzyB8BuGbkaAdL/GgIR0CZe921UlzEdX2UKGgGR0BynsfbKzRhaAdL0GgIR0CZfHvicXnAdX2UKGgGR0Bxs9GhEjPfaAdLzWgIR0CZfJ3Mpw0gdX2UKGgGR0BxrbCfpUxVaAdLuWgIR0CZfNTuOS4fdX2UKGgGR0BzKN+z+m3waAdL3WgIR0CZfWxVQyh0dX2UKGgGR0BymHxLCemOaAdL4mgIR0CZfh+I/JNkdX2UKGgGR0BxWJw6ySmqaAdLzWgIR0CZfmV2zOX3dX2UKGgGR0Byo1z90ihWaAdLwWgIR0CZfxhd+ocadX2UKGgGR0B0F9IJ7b+MaAdL1GgIR0CZj+wM6RyPdX2UKGgGR0ByeHf779AHaAdNkAFoCEdAmZAfDDTBqXV9lChoBkdAbxk23rleW2gHS8loCEdAmZE+2E0zj3V9lChoBkdAck0v3ai9I2gHS9doCEdAmZFexfOUuHV9lChoBkdAcp9DV6NVBGgHS/VoCEdAmZFj8xbjcXV9lChoBkdAbZjqFh5PdmgHS9poCEdAmZHBwVCXyHV9lChoBkdAcTglCkXUIGgHS8loCEdAmZI4o7V8TnV9lChoBkdAcT47l7tzCGgHS+hoCEdAmZJTIq9XcXV9lChoBkdAcIqLZi/fwmgHS9NoCEdAmZJfGIbfg3V9lChoBkdAZP+t8NQTEmgHTegDaAhHQJmTNHJ9y951fZQoaAZHQHJEMcIZ62RoB0u7aAhHQJmTjs7dSEV1fZQoaAZHQHKsaGtZFG5oB0voaAhHQJmT0078vVV1fZQoaAZHQHExWZy+6AhoB0vWaAhHQJmT/0WdmQN1fZQoaAZHQHNpyJGe+VVoB00dAWgIR0CZlKGXokiVdX2UKGgGR0ByEMBBAv+PaAdL52gIR0CZlUw1BMSLdX2UKGgGR0ByFbbXYlIFaAdLxmgIR0CZlVkwvg3tdX2UKGgGR0BvTABDG96DaAdL3WgIR0CZliIV/MGHdX2UKGgGR0BwOlj+aScLaAdLwGgIR0CZlmQZGax5dX2UKGgGR0BzM5o371qWaAdL0GgIR0CZluouPFNtdX2UKGgGR0BzUhxffGdaaAdLx2gIR0CZl283++/QdX2UKGgGR0Bxe/wF1SwXaAdL42gIR0CZl8RIBikPdX2UKGgGR0BwxsXXRPXTaAdL2GgIR0CZmANQTEiudX2UKGgGR0BxVWElE7W/aAdL2GgIR0CZmA52Qnx8dX2UKGgGR0Bwn0edTYNBaAdNCAFoCEdAmZhq/RE4N3V9lChoBkdAY1Hs6aLGaWgHTegDaAhHQJmYaCUX5311fZQoaAZHQHEFs0gr6LxoB0vSaAhHQJmZUToMa0h1fZQoaAZHQHHe7n1WbPRoB0vbaAhHQJmZXeYUnG91fZQoaAZHQHHDtTP0I1NoB0v2aAhHQJmZdEXtSht1fZQoaAZHQHE66Rhc7hhoB00QAWgIR0CZmmDHwPRRdX2UKGgGR0BxKmsxO+IuaAdLzGgIR0CZmnWJrLyMdX2UKGgGR0BzIrcoH9m6aAdL0GgIR0CZmoPuG9HudX2UKGgGR0ByDi1D0DlpaAdL7WgIR0CZmpL/jsD5dX2UKGgGR0Bw2MZNwiqyaAdLwmgIR0CZmuRYzSCwdX2UKGgGR0BwQ0P1+RYBaAdL0mgIR0CZm3Fh5PdmdX2UKGgGR0BzmYCPp6hQaAdLvmgIR0CZnGltCRfXdX2UKGgGR0BxiyZNO/L1aAdLy2gIR0CZnJCf6Gg0dX2UKGgGR0BwIlYW+GoKaAdL5mgIR0CZnPZhKDkEdX2UKGgGR0Byt6LCN0eVaAdNBQFoCEdAmZ0/2PDHfnV9lChoBkdAcWS2OQyRCGgHS9xoCEdAmZ2hWYF7lnV9lChoBkdAcXAdgOSW7mgHS75oCEdAmZ3wuIyj6HV9lChoBkdAcCpZqVQhwGgHS8RoCEdAmZ4ImkWRBHV9lChoBkdAbxeqAjIJaGgHS8BoCEdAmZ4SwGGEf3V9lChoBkdAcM4Mh5gPVmgHTQIBaAhHQJmeMJSiudR1fZQoaAZHQHKa77CSA6NoB0v2aAhHQJmeOgElme11fZQoaAZHQG+vqqXF98ZoB0u+aAhHQJme71uivgZ1fZQoaAZHQG7xLLQokRloB0vOaAhHQJmfK4x1xKh1fZQoaAZHQHIALzXjENxoB0vPaAhHQJmfQT101ZV1fZQoaAZHQHDAk8RtgrpoB0vvaAhHQJmgEE9t/F11fZQoaAZHQG2Ammk30f5oB0vqaAhHQJmgTP4VRDV1fZQoaAZHQHD4/HLidatoB0voaAhHQJmg0/MW43F1fZQoaAZHQHJflk1/DtRoB0vjaAhHQJmh2RnvlU91fZQoaAZHQHN62HHmzSloB0vraAhHQJmiu9L6DXh1fZQoaAZHQHDVGVVxS51oB00CAWgIR0CZotuGsV+JdX2UKGgGR0BzN2OinHeaaAdL4mgIR0CZotwRGtp3dX2UKGgGR0Bur57NSqEOaAdL3mgIR0CZozGiYb84dX2UKGgGR0ByDUbedkJ8aAdLw2gIR0CZoy3KSxJNdX2UKGgGR0BxWDQTmGM5aAdLzWgIR0CZo2y3Td+HdX2UKGgGR0Bwl7JHRTjvaAdL4mgIR0CZo7i5d4VzdX2UKGgGR0BxipaaCtihaAdL3GgIR0CZo7gYxcmjdX2UKGgGR0BuumQuEmICaAdLw2gIR0CZpLFFUhmodX2UKGgGR0BxHwpI+W4WaAdNFgFoCEdAmaVt/axoqXV9lChoBkdAcRs83Mpw0mgHS75oCEdAmaWvuLJjlXV9lChoBkdAcu+/hESdv2gHS/VoCEdAmaXLnxJ/X3V9lChoBkdAcAzQeFL39WgHS8ZoCEdAmaY9UbT+enV9lChoBkdActZRXfZVXGgHTQMBaAhHQJmmii+L3sZ1fZQoaAZHQHKHfTPSlWRoB0u/aAhHQJmmuNdZ7ol1fZQoaAZHQHCavH93r2RoB0vMaAhHQJmpFRUFSsN1fZQoaAZHQHMnQ1vVEuxoB0vRaAhHQJmpYsXizcB1fZQoaAZHQHH7CgsbvPVoB0vTaAhHQJmpdzltCRh1fZQoaAZHQHH1NgKF7D5oB0vAaAhHQJmpwE6kqMF1fZQoaAZHQHGG/VurIYFoB0vRaAhHQJmpvRjSXt11fZQoaAZHQHB1ikGiYb9oB0vZaAhHQJmqPLGJemh1fZQoaAZHQHBgY8hcJMRoB0vQaAhHQJmqRSKm8/V1fZQoaAZHQHMNWvOhTOxoB0vtaAhHQJmqp8rqdH51fZQoaAZHQHLcxHoX9BNoB00SAWgIR0CZqq6nR9gGdWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 492,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:da5c533f35585b7d2ae32633630b06b565d54a2157e849cc2a083b514e538446
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9feeef1c90b168a4d293e8e930dbb50ab0937e60af8d0a5c06273bb7a8af8d13
3
  size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4a43ef3d1463844f230e4ad579b499652fd26cc18b0e2d688da1fda012738994
3
  size 43329
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c88426846dc2522ce32353946ede3839ec3fcdc801f5b33ea54ae6dda1f64754
3
  size 43329
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -206.4850728256628, "std_reward": 91.61974212210136, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-11T00:30:44.766539"}
 
1
+ {"mean_reward": 283.40995485698966, "std_reward": 17.929456420460014, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-11T01:38:08.364776"}