NeoPy commited on
Commit
c8dcc87
·
verified ·
1 Parent(s): 1d6150f

Create EasyRVC.py

Browse files
Files changed (1) hide show
  1. EasyRVC.py +476 -0
EasyRVC.py ADDED
@@ -0,0 +1,476 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from original import *
2
+ import shutil, glob
3
+ from easyfuncs import download_from_url, CachedModels, whisperspeak, whisperspeak_on, stereo_process, sr_process
4
+ os.makedirs("dataset",exist_ok=True)
5
+ os.makedirs("audios",exist_ok=True)
6
+ model_library = CachedModels()
7
+
8
+ with gr.Blocks(title="🔊",theme=gr.themes.Base()) as app:
9
+
10
+ with gr.Tabs():
11
+ with gr.TabItem("Inference"):
12
+ with gr.Row():
13
+ voice_model = gr.Dropdown(label="Model Voice", choices=sorted(names), value=lambda:sorted(names)[0] if len(sorted(names)) > 0 else '', interactive=True)
14
+ refresh_button = gr.Button("Refresh", variant="primary")
15
+ spk_item = gr.Slider(
16
+ minimum=0,
17
+ maximum=2333,
18
+ step=1,
19
+ label="Speaker ID",
20
+ value=0,
21
+ visible=False,
22
+ interactive=True,
23
+ )
24
+ vc_transform0 = gr.Number(
25
+ label="Pitch",
26
+ value=0
27
+ )
28
+ but0 = gr.Button(value="Convert", variant="primary")
29
+ with gr.Row():
30
+ with gr.Column():
31
+ with gr.Tabs():
32
+ with gr.TabItem("Upload"):
33
+ dropbox = gr.File(label="Drop your audio here & hit the Reload button.")
34
+ with gr.TabItem("Record", visible=False):
35
+ record_button=gr.Microphone(label="OR Record audio.", type="filepath")
36
+ with gr.TabItem("TTS (experimental)", visible=False if whisperspeak_on is None else True):
37
+ with gr.Row():
38
+ tts_text = gr.Textbox(label="Text to Speech", placeholder="Enter text to convert to speech")
39
+ with gr.Row():
40
+ tts_lang = gr.Radio(choices=["en","es","it","pt"],label="",value="en")
41
+ with gr.Row():
42
+ tts_button = gr.Button(value="Speak", variant="primary")
43
+ with gr.Row():
44
+ paths_for_files = lambda path:[os.path.abspath(os.path.join(path, f)) for f in os.listdir(path) if os.path.splitext(f)[1].lower() in ('.mp3', '.wav', '.flac', '.ogg')]
45
+ input_audio0 = gr.Dropdown(
46
+ label="Input Path",
47
+ value=paths_for_files('audios')[0] if len(paths_for_files('audios')) > 0 else '',
48
+ choices=paths_for_files('audios'), # Only show absolute paths for audio files ending in .mp3, .wav, .flac or .ogg
49
+ allow_custom_value=True
50
+ )
51
+ with gr.Row():
52
+ input_player = gr.Audio(label="Input",type="numpy")
53
+ input_audio0.change(
54
+ inputs=[input_audio0],
55
+ outputs=[input_player],
56
+ fn=lambda path: {"value":path,"__type__":"update"} if os.path.exists(path) else None
57
+ )
58
+ record_button.stop_recording(
59
+ fn=lambda audio:audio, #TODO save wav lambda
60
+ inputs=[record_button],
61
+ outputs=[input_audio0])
62
+ dropbox.upload(
63
+ fn=lambda audio:audio.name,
64
+ inputs=[dropbox],
65
+ outputs=[input_audio0])
66
+ tts_button.click(
67
+ fn=whisperspeak,
68
+ inputs=[tts_text,tts_lang],
69
+ outputs=[input_audio0],
70
+ show_progress=True)
71
+ tts_button.click(
72
+ fn=lambda: {"choices":paths_for_files('audios'),"__type__":"update"},
73
+ inputs=[],
74
+ outputs=[input_audio0])
75
+ with gr.Column():
76
+ with gr.Accordion("Change Index", open=False):
77
+ file_index2 = gr.Dropdown(
78
+ label="Change Index",
79
+ choices=sorted(index_paths),
80
+ interactive=True,
81
+ value=sorted(index_paths)[0] if len(sorted(index_paths)) > 0 else ''
82
+ )
83
+ index_rate1 = gr.Slider(
84
+ minimum=0,
85
+ maximum=1,
86
+ label="Index Strength",
87
+ value=0.5,
88
+ interactive=True,
89
+ )
90
+ output_player = gr.Audio(label="Output",interactive=False)
91
+ with gr.Accordion("General Settings", open=False):
92
+ f0method0 = gr.Radio(
93
+ label="Method",
94
+ choices=["pm", "harvest", "crepe", "rmvpe"]
95
+ if config.dml == False
96
+ else ["pm", "harvest", "rmvpe"],
97
+ value="rmvpe",
98
+ interactive=True,
99
+ )
100
+ filter_radius0 = gr.Slider(
101
+ minimum=0,
102
+ maximum=7,
103
+ label="Breathiness Reduction (Harvest only)",
104
+ value=3,
105
+ step=1,
106
+ interactive=True,
107
+ )
108
+ resample_sr0 = gr.Slider(
109
+ minimum=0,
110
+ maximum=48000,
111
+ label="Resample",
112
+ value=0,
113
+ step=1,
114
+ interactive=True,
115
+ visible=False
116
+ )
117
+ rms_mix_rate0 = gr.Slider(
118
+ minimum=0,
119
+ maximum=1,
120
+ label="Volume Normalization",
121
+ value=0,
122
+ interactive=True,
123
+ )
124
+ protect0 = gr.Slider(
125
+ minimum=0,
126
+ maximum=0.5,
127
+ label="Breathiness Protection (0 is enabled, 0.5 is disabled)",
128
+ value=0.33,
129
+ step=0.01,
130
+ interactive=True,
131
+ )
132
+ if voice_model != None:
133
+ try: vc.get_vc(voice_model.value,protect0,protect0)
134
+ except: pass
135
+ with gr.Accordion("Processing Tools (Experimental)", open=True):
136
+ audio_choice = gr.Radio(choices=["Input", "Output"], value="Output", label="Source",interactive=True)
137
+ with gr.Column():
138
+ stereo_button = gr.Button(value="Stereo", variant="primary")
139
+ stereo_button.click(
140
+ fn=stereo_process,
141
+ inputs=[input_player,output_player,audio_choice],
142
+ outputs=[output_player],
143
+ preprocess=True,
144
+ )
145
+ with gr.Column():
146
+ sr_button = gr.Button(value="SuperResolution", variant="primary")
147
+ sr_button.click(
148
+ fn=sr_process,
149
+ inputs=[input_player,output_player,audio_choice],
150
+ outputs=[output_player],
151
+ preprocess=True,
152
+ )
153
+ file_index1 = gr.Textbox(
154
+ label="Index Path",
155
+ interactive=True,
156
+ visible=False#Not used here
157
+ )
158
+ refresh_button.click(
159
+ fn=change_choices,
160
+ inputs=[],
161
+ outputs=[voice_model, file_index2],
162
+ api_name="infer_refresh",
163
+ )
164
+ refresh_button.click(
165
+ fn=lambda:{"choices":paths_for_files('audios'),"__type__":"update"}, #TODO check if properly returns a sorted list of audio files in the 'audios' folder that have the extensions '.wav', '.mp3', '.ogg', or '.flac'
166
+ inputs=[],
167
+ outputs = [input_audio0],
168
+ )
169
+ refresh_button.click(
170
+ fn=lambda:{"value":paths_for_files('audios')[0],"__type__":"update"} if len(paths_for_files('audios')) > 0 else {"value":"","__type__":"update"}, #TODO check if properly returns a sorted list of audio files in the 'audios' folder that have the extensions '.wav', '.mp3', '.ogg', or '.flac'
171
+ inputs=[],
172
+ outputs = [input_audio0],
173
+ )
174
+ with gr.Row():
175
+ f0_file = gr.File(label="F0 Path", visible=False)
176
+ with gr.Row():
177
+ vc_output1 = gr.Textbox(label="Information", placeholder="Welcome!",visible=False)
178
+ but0.click(
179
+ vc.vc_single,
180
+ [
181
+ spk_item,
182
+ input_audio0,
183
+ vc_transform0,
184
+ f0_file,
185
+ f0method0,
186
+ file_index1,
187
+ file_index2,
188
+ index_rate1,
189
+ filter_radius0,
190
+ resample_sr0,
191
+ rms_mix_rate0,
192
+ protect0,
193
+ ],
194
+ [vc_output1, output_player],
195
+ api_name="infer_convert",
196
+ )
197
+ voice_model.change(
198
+ fn=vc.get_vc,
199
+ inputs=[voice_model, protect0, protect0],
200
+ outputs=[spk_item, protect0, protect0, file_index2, file_index2],
201
+ api_name="infer_change_voice",
202
+ )
203
+ with gr.TabItem("Download Models"):
204
+ with gr.Row():
205
+ url_input = gr.Textbox(label="URL to model", value="",placeholder="https://...", scale=6)
206
+ name_output = gr.Textbox(label="Save as", value="",placeholder="MyModel",scale=2)
207
+ url_download = gr.Button(value="Download Model",scale=2)
208
+ url_download.click(
209
+ inputs=[url_input,name_output],
210
+ outputs=[url_input],
211
+ fn=download_from_url,
212
+ )
213
+ with gr.Row():
214
+ model_browser = gr.Dropdown(choices=list(model_library.models.keys()),label="OR Search Models (Quality UNKNOWN)",scale=5)
215
+ download_from_browser = gr.Button(value="Get",scale=2)
216
+ download_from_browser.click(
217
+ inputs=[model_browser],
218
+ outputs=[model_browser],
219
+ fn=lambda model: download_from_url(model_library.models[model],model),
220
+ )
221
+ with gr.TabItem("Train"):
222
+ with gr.Row():
223
+ with gr.Column():
224
+ training_name = gr.Textbox(label="Name your model", value="My-Voice",placeholder="My-Voice")
225
+ np7 = gr.Slider(
226
+ minimum=0,
227
+ maximum=config.n_cpu,
228
+ step=1,
229
+ label="Number of CPU processes used to extract pitch features",
230
+ value=int(np.ceil(config.n_cpu / 1.5)),
231
+ interactive=True,
232
+ )
233
+ sr2 = gr.Radio(
234
+ label="Sampling Rate",
235
+ choices=["40k", "32k"],
236
+ value="32k",
237
+ interactive=True,
238
+ visible=False
239
+ )
240
+ if_f0_3 = gr.Radio(
241
+ label="Will your model be used for singing? If not, you can ignore this.",
242
+ choices=[True, False],
243
+ value=True,
244
+ interactive=True,
245
+ visible=False
246
+ )
247
+ version19 = gr.Radio(
248
+ label="Version",
249
+ choices=["v1", "v2"],
250
+ value="v2",
251
+ interactive=True,
252
+ visible=False,
253
+ )
254
+ dataset_folder = gr.Textbox(
255
+ label="dataset folder", value='dataset'
256
+ )
257
+ easy_uploader = gr.Files(label="Drop your audio files here",file_types=['audio'])
258
+ but1 = gr.Button("1. Process", variant="primary")
259
+ info1 = gr.Textbox(label="Information", value="",visible=True)
260
+ easy_uploader.upload(inputs=[dataset_folder],outputs=[],fn=lambda folder:os.makedirs(folder,exist_ok=True))
261
+ easy_uploader.upload(
262
+ fn=lambda files,folder: [shutil.copy2(f.name,os.path.join(folder,os.path.split(f.name)[1])) for f in files] if folder != "" else gr.Warning('Please enter a folder name for your dataset'),
263
+ inputs=[easy_uploader, dataset_folder],
264
+ outputs=[])
265
+ gpus6 = gr.Textbox(
266
+ label="Enter the GPU numbers to use separated by -, (e.g. 0-1-2)",
267
+ value=gpus,
268
+ interactive=True,
269
+ visible=F0GPUVisible,
270
+ )
271
+ gpu_info9 = gr.Textbox(
272
+ label="GPU Info", value=gpu_info, visible=F0GPUVisible
273
+ )
274
+ spk_id5 = gr.Slider(
275
+ minimum=0,
276
+ maximum=4,
277
+ step=1,
278
+ label="Speaker ID",
279
+ value=0,
280
+ interactive=True,
281
+ visible=False
282
+ )
283
+ but1.click(
284
+ preprocess_dataset,
285
+ [dataset_folder, training_name, sr2, np7],
286
+ [info1],
287
+ api_name="train_preprocess",
288
+ )
289
+ with gr.Column():
290
+ f0method8 = gr.Radio(
291
+ label="F0 extraction method",
292
+ choices=["pm", "harvest", "dio", "rmvpe", "rmvpe_gpu"],
293
+ value="rmvpe_gpu",
294
+ interactive=True,
295
+ )
296
+ gpus_rmvpe = gr.Textbox(
297
+ label="GPU numbers to use separated by -, (e.g. 0-1-2)",
298
+ value="%s-%s" % (gpus, gpus),
299
+ interactive=True,
300
+ visible=F0GPUVisible,
301
+ )
302
+ but2 = gr.Button("2. Extract Features", variant="primary")
303
+ info2 = gr.Textbox(label="Information", value="", max_lines=8)
304
+ f0method8.change(
305
+ fn=change_f0_method,
306
+ inputs=[f0method8],
307
+ outputs=[gpus_rmvpe],
308
+ )
309
+ but2.click(
310
+ extract_f0_feature,
311
+ [
312
+ gpus6,
313
+ np7,
314
+ f0method8,
315
+ if_f0_3,
316
+ training_name,
317
+ version19,
318
+ gpus_rmvpe,
319
+ ],
320
+ [info2],
321
+ api_name="train_extract_f0_feature",
322
+ )
323
+ with gr.Column():
324
+ total_epoch11 = gr.Slider(
325
+ minimum=2,
326
+ maximum=1000,
327
+ step=1,
328
+ label="Epochs (more epochs may improve quality but takes longer)",
329
+ value=150,
330
+ interactive=True,
331
+ )
332
+ but4 = gr.Button("3. Train Index", variant="primary")
333
+ but3 = gr.Button("4. Train Model", variant="primary")
334
+ info3 = gr.Textbox(label="Information", value="", max_lines=10)
335
+ with gr.Accordion(label="General Settings", open=False):
336
+ gpus16 = gr.Textbox(
337
+ label="GPUs separated by -, (e.g. 0-1-2)",
338
+ value="0",
339
+ interactive=True,
340
+ visible=True
341
+ )
342
+ save_epoch10 = gr.Slider(
343
+ minimum=1,
344
+ maximum=50,
345
+ step=1,
346
+ label="Weight Saving Frequency",
347
+ value=25,
348
+ interactive=True,
349
+ )
350
+ batch_size12 = gr.Slider(
351
+ minimum=1,
352
+ maximum=40,
353
+ step=1,
354
+ label="Batch Size",
355
+ value=default_batch_size,
356
+ interactive=True,
357
+ )
358
+ if_save_latest13 = gr.Radio(
359
+ label="Only save the latest model",
360
+ choices=["yes", "no"],
361
+ value="yes",
362
+ interactive=True,
363
+ visible=False
364
+ )
365
+ if_cache_gpu17 = gr.Radio(
366
+ label="If your dataset is UNDER 10 minutes, cache it to train faster",
367
+ choices=["yes", "no"],
368
+ value="no",
369
+ interactive=True,
370
+ )
371
+ if_save_every_weights18 = gr.Radio(
372
+ label="Save small model at every save point",
373
+ choices=["yes", "no"],
374
+ value="yes",
375
+ interactive=True,
376
+ )
377
+ with gr.Accordion(label="Change pretrains", open=False):
378
+ pretrained = lambda sr, letter: [os.path.abspath(os.path.join('assets/pretrained_v2', file)) for file in os.listdir('assets/pretrained_v2') if file.endswith('.pth') and sr in file and letter in file]
379
+ pretrained_G14 = gr.Dropdown(
380
+ label="pretrained G",
381
+ # Get a list of all pretrained G model files in assets/pretrained_v2 that end with .pth
382
+ choices = pretrained(sr2.value, 'G'),
383
+ value=pretrained(sr2.value, 'G')[0] if len(pretrained(sr2.value, 'G')) > 0 else '',
384
+ interactive=True,
385
+ visible=True
386
+ )
387
+ pretrained_D15 = gr.Dropdown(
388
+ label="pretrained D",
389
+ choices = pretrained(sr2.value, 'D'),
390
+ value= pretrained(sr2.value, 'D')[0] if len(pretrained(sr2.value, 'G')) > 0 else '',
391
+ visible=True,
392
+ interactive=True
393
+ )
394
+ with gr.Row():
395
+ download_model = gr.Button('5.Download Model')
396
+ with gr.Row():
397
+ model_files = gr.Files(label='Your Model and Index file can be downloaded here:')
398
+ download_model.click(
399
+ fn=lambda name: os.listdir(f'assets/weights/{name}') + glob.glob(f'logs/{name.split(".")[0]}/added_*.index'),
400
+ inputs=[training_name],
401
+ outputs=[model_files, info3])
402
+ with gr.Row():
403
+ sr2.change(
404
+ change_sr2,
405
+ [sr2, if_f0_3, version19],
406
+ [pretrained_G14, pretrained_D15],
407
+ )
408
+ version19.change(
409
+ change_version19,
410
+ [sr2, if_f0_3, version19],
411
+ [pretrained_G14, pretrained_D15, sr2],
412
+ )
413
+ if_f0_3.change(
414
+ change_f0,
415
+ [if_f0_3, sr2, version19],
416
+ [f0method8, pretrained_G14, pretrained_D15],
417
+ )
418
+ with gr.Row():
419
+ but5 = gr.Button("1 Click Training", variant="primary", visible=False)
420
+ but3.click(
421
+ click_train,
422
+ [
423
+ training_name,
424
+ sr2,
425
+ if_f0_3,
426
+ spk_id5,
427
+ save_epoch10,
428
+ total_epoch11,
429
+ batch_size12,
430
+ if_save_latest13,
431
+ pretrained_G14,
432
+ pretrained_D15,
433
+ gpus16,
434
+ if_cache_gpu17,
435
+ if_save_every_weights18,
436
+ version19,
437
+ ],
438
+ info3,
439
+ api_name="train_start",
440
+ )
441
+ but4.click(train_index, [training_name, version19], info3)
442
+ but5.click(
443
+ train1key,
444
+ [
445
+ training_name,
446
+ sr2,
447
+ if_f0_3,
448
+ dataset_folder,
449
+ spk_id5,
450
+ np7,
451
+ f0method8,
452
+ save_epoch10,
453
+ total_epoch11,
454
+ batch_size12,
455
+ if_save_latest13,
456
+ pretrained_G14,
457
+ pretrained_D15,
458
+ gpus16,
459
+ if_cache_gpu17,
460
+ if_save_every_weights18,
461
+ version19,
462
+ gpus_rmvpe,
463
+ ],
464
+ info3,
465
+ api_name="train_start_all",
466
+ )
467
+
468
+ if config.iscolab:
469
+ app.queue(max_size=20).launch(share=True,allowed_paths=["a.png","kofi_button.png"],show_error=True)
470
+ else:
471
+ app.queue(max_size=1022).launch(
472
+ server_name="0.0.0.0",
473
+ inbrowser=not config.noautoopen,
474
+ server_port=config.listen_port,
475
+ quiet=True,
476
+ )