Update rvcinfpy/main.py
Browse files- rvcinfpy/main.py +855 -922
rvcinfpy/main.py
CHANGED
@@ -1,922 +1,855 @@
|
|
1 |
-
from
|
2 |
-
import torch
|
3 |
-
import gc
|
4 |
-
import numpy as np
|
5 |
-
import os
|
6 |
-
import warnings
|
7 |
-
import threading
|
8 |
-
from tqdm import tqdm
|
9 |
-
from
|
10 |
-
SynthesizerTrnMs256NSFsid,
|
11 |
-
SynthesizerTrnMs256NSFsid_nono,
|
12 |
-
SynthesizerTrnMs768NSFsid,
|
13 |
-
SynthesizerTrnMs768NSFsid_nono,
|
14 |
-
)
|
15 |
-
from
|
16 |
-
import soundfile as sf
|
17 |
-
from scipy import signal
|
18 |
-
from time import time as ttime
|
19 |
-
import faiss
|
20 |
-
from
|
21 |
-
import librosa
|
22 |
-
from urllib.parse import urlparse
|
23 |
-
import copy
|
24 |
-
|
25 |
-
warnings.filterwarnings("ignore")
|
26 |
-
|
27 |
-
|
28 |
-
class Config:
|
29 |
-
def __init__(self, only_cpu=False):
|
30 |
-
self.device = "cuda:0"
|
31 |
-
self.is_half = True
|
32 |
-
self.n_cpu = 0
|
33 |
-
self.gpu_name = None
|
34 |
-
self.gpu_mem = None
|
35 |
-
(
|
36 |
-
self.x_pad,
|
37 |
-
self.x_query,
|
38 |
-
self.x_center,
|
39 |
-
self.x_max
|
40 |
-
) = self.device_config(only_cpu)
|
41 |
-
|
42 |
-
def device_config(self, only_cpu) -> tuple:
|
43 |
-
if torch.cuda.is_available() and not only_cpu:
|
44 |
-
i_device = int(self.device.split(":")[-1])
|
45 |
-
self.gpu_name = torch.cuda.get_device_name(i_device)
|
46 |
-
if (
|
47 |
-
("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
|
48 |
-
or "P40" in self.gpu_name.upper()
|
49 |
-
or "1060" in self.gpu_name
|
50 |
-
or "1070" in self.gpu_name
|
51 |
-
or "1080" in self.gpu_name
|
52 |
-
):
|
53 |
-
logger.info(
|
54 |
-
"16/10 Series GPUs and P40 excel "
|
55 |
-
"in single-precision tasks."
|
56 |
-
)
|
57 |
-
self.is_half = False
|
58 |
-
else:
|
59 |
-
self.gpu_name = None
|
60 |
-
self.gpu_mem = int(
|
61 |
-
torch.cuda.get_device_properties(i_device).total_memory
|
62 |
-
/ 1024
|
63 |
-
/ 1024
|
64 |
-
/ 1024
|
65 |
-
+ 0.4
|
66 |
-
)
|
67 |
-
elif torch.backends.mps.is_available() and not only_cpu:
|
68 |
-
logger.info("Supported N-card not found, using MPS for inference")
|
69 |
-
self.device = "mps"
|
70 |
-
else:
|
71 |
-
logger.info("No supported N-card found, using CPU for inference")
|
72 |
-
self.device = "cpu"
|
73 |
-
self.is_half = False
|
74 |
-
|
75 |
-
if self.n_cpu == 0:
|
76 |
-
self.n_cpu = os.cpu_count()
|
77 |
-
|
78 |
-
if self.is_half:
|
79 |
-
# 6GB VRAM configuration
|
80 |
-
x_pad = 3
|
81 |
-
x_query = 10
|
82 |
-
x_center = 60
|
83 |
-
x_max = 65
|
84 |
-
else:
|
85 |
-
# 5GB VRAM configuration
|
86 |
-
x_pad = 1
|
87 |
-
x_query = 6
|
88 |
-
x_center = 38
|
89 |
-
x_max = 41
|
90 |
-
|
91 |
-
if self.gpu_mem is not None and self.gpu_mem <= 4:
|
92 |
-
x_pad = 1
|
93 |
-
x_query = 5
|
94 |
-
x_center = 30
|
95 |
-
x_max = 32
|
96 |
-
|
97 |
-
logger.info(
|
98 |
-
f"Config: Device is {self.device}, "
|
99 |
-
f"half precision is {self.is_half}"
|
100 |
-
)
|
101 |
-
|
102 |
-
return x_pad, x_query, x_center, x_max
|
103 |
-
|
104 |
-
|
105 |
-
BASE_DOWNLOAD_LINK = "https://huggingface.co/r3gm/sonitranslate_voice_models/resolve/main/"
|
106 |
-
BASE_MODELS = [
|
107 |
-
"hubert_base.pt",
|
108 |
-
"rmvpe.pt"
|
109 |
-
]
|
110 |
-
BASE_DIR = "."
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
net_g
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
)
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
)
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
)
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
)
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
)
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
)
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
|
626 |
-
|
627 |
-
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
|
742 |
-
|
743 |
-
|
744 |
-
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
|
750 |
-
|
751 |
-
|
752 |
-
|
753 |
-
|
754 |
-
|
755 |
-
|
756 |
-
|
757 |
-
|
758 |
-
|
759 |
-
|
760 |
-
|
761 |
-
|
762 |
-
|
763 |
-
|
764 |
-
|
765 |
-
|
766 |
-
|
767 |
-
|
768 |
-
|
769 |
-
|
770 |
-
|
771 |
-
|
772 |
-
|
773 |
-
|
774 |
-
|
775 |
-
|
776 |
-
|
777 |
-
|
778 |
-
|
779 |
-
|
780 |
-
|
781 |
-
|
782 |
-
|
783 |
-
|
784 |
-
|
785 |
-
|
786 |
-
|
787 |
-
|
788 |
-
|
789 |
-
|
790 |
-
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
|
799 |
-
|
800 |
-
|
801 |
-
|
802 |
-
|
803 |
-
|
804 |
-
|
805 |
-
|
806 |
-
|
807 |
-
|
808 |
-
|
809 |
-
|
810 |
-
|
811 |
-
|
812 |
-
|
813 |
-
|
814 |
-
|
815 |
-
|
816 |
-
|
817 |
-
|
818 |
-
|
819 |
-
|
820 |
-
|
821 |
-
|
822 |
-
|
823 |
-
|
824 |
-
|
825 |
-
|
826 |
-
|
827 |
-
|
828 |
-
|
829 |
-
|
830 |
-
|
831 |
-
|
832 |
-
|
833 |
-
|
834 |
-
|
835 |
-
|
836 |
-
|
837 |
-
#
|
838 |
-
|
839 |
-
|
840 |
-
|
841 |
-
|
842 |
-
|
843 |
-
|
844 |
-
|
845 |
-
|
846 |
-
self.model_vc["
|
847 |
-
|
848 |
-
|
849 |
-
|
850 |
-
|
851 |
-
|
852 |
-
|
853 |
-
|
854 |
-
|
855 |
-
|
856 |
-
index = big_npy = None
|
857 |
-
else:
|
858 |
-
logger.warning("File index not found")
|
859 |
-
index_rate = 0
|
860 |
-
index = big_npy = None
|
861 |
-
|
862 |
-
self.model_vc["index_rate"] = index_rate
|
863 |
-
self.model_vc["index"] = index
|
864 |
-
self.model_vc["big_npy"] = big_npy
|
865 |
-
|
866 |
-
# Load f0 file
|
867 |
-
inp_f0 = None
|
868 |
-
if os.path.exists(f0_file):
|
869 |
-
try:
|
870 |
-
with open(f0_file, "r") as f:
|
871 |
-
lines = f.read().strip("\n").split("\n")
|
872 |
-
inp_f0 = []
|
873 |
-
for line in lines:
|
874 |
-
inp_f0.append([float(i) for i in line.split(",")])
|
875 |
-
inp_f0 = np.array(inp_f0, dtype="float32")
|
876 |
-
except Exception as error:
|
877 |
-
logger.error(f"f0 file: {str(error)}")
|
878 |
-
|
879 |
-
self.model_vc["inp_f0"] = inp_f0
|
880 |
-
|
881 |
-
if "rmvpe" in f0_method:
|
882 |
-
if not self.model_pitch_estimator:
|
883 |
-
from infer_rvc_python.lib.rmvpe import RMVPE
|
884 |
-
|
885 |
-
logger.info("Loading vocal pitch estimator model")
|
886 |
-
if self.rmvpe_path is None:
|
887 |
-
self.rmvpe_path = ""
|
888 |
-
rm_local_path = "rmvpe.pt"
|
889 |
-
if os.path.exists(self.rmvpe_path):
|
890 |
-
rm_local_path = self.rmvpe_path
|
891 |
-
self.model_pitch_estimator = RMVPE(
|
892 |
-
rm_local_path,
|
893 |
-
is_half=self.config.is_half,
|
894 |
-
device=self.config.device
|
895 |
-
)
|
896 |
-
|
897 |
-
self.model_vc["pipe"].model_rmvpe = self.model_pitch_estimator
|
898 |
-
|
899 |
-
self.cache_model = copy.deepcopy(now_data)
|
900 |
-
|
901 |
-
return self.infer(
|
902 |
-
tag,
|
903 |
-
now_data,
|
904 |
-
# load model
|
905 |
-
self.model_vc["n_spk"],
|
906 |
-
self.model_vc["tgt_sr"],
|
907 |
-
self.model_vc["net_g"],
|
908 |
-
self.model_vc["pipe"],
|
909 |
-
self.model_vc["cpt"],
|
910 |
-
self.model_vc["version"],
|
911 |
-
self.model_vc["if_f0"],
|
912 |
-
# load index
|
913 |
-
self.model_vc["index_rate"],
|
914 |
-
self.model_vc["index"],
|
915 |
-
self.model_vc["big_npy"],
|
916 |
-
# load f0 file
|
917 |
-
self.model_vc["inp_f0"],
|
918 |
-
# output file
|
919 |
-
audio_data,
|
920 |
-
False,
|
921 |
-
"array",
|
922 |
-
)
|
|
|
1 |
+
from rvcinfpy.lib.log_config import logger
|
2 |
+
import torch
|
3 |
+
import gc
|
4 |
+
import numpy as np
|
5 |
+
import os
|
6 |
+
import warnings
|
7 |
+
import threading
|
8 |
+
from tqdm import tqdm
|
9 |
+
from rvcinfpy.lib.infer_pack.models import (
|
10 |
+
SynthesizerTrnMs256NSFsid,
|
11 |
+
SynthesizerTrnMs256NSFsid_nono,
|
12 |
+
SynthesizerTrnMs768NSFsid,
|
13 |
+
SynthesizerTrnMs768NSFsid_nono,
|
14 |
+
)
|
15 |
+
from rvcinfpy.lib.audio import load_audio
|
16 |
+
import soundfile as sf
|
17 |
+
from scipy import signal
|
18 |
+
from time import time as ttime
|
19 |
+
import faiss
|
20 |
+
from rvcinfpy.root_pipe import VC, change_rms, bh, ah
|
21 |
+
import librosa
|
22 |
+
from urllib.parse import urlparse
|
23 |
+
import copy
|
24 |
+
from rvcinferpy.utils import download_manager, load_file_from_url
|
25 |
+
warnings.filterwarnings("ignore")
|
26 |
+
|
27 |
+
|
28 |
+
class Config:
|
29 |
+
def __init__(self, only_cpu=False):
|
30 |
+
self.device = "cuda:0"
|
31 |
+
self.is_half = True
|
32 |
+
self.n_cpu = 0
|
33 |
+
self.gpu_name = None
|
34 |
+
self.gpu_mem = None
|
35 |
+
(
|
36 |
+
self.x_pad,
|
37 |
+
self.x_query,
|
38 |
+
self.x_center,
|
39 |
+
self.x_max
|
40 |
+
) = self.device_config(only_cpu)
|
41 |
+
|
42 |
+
def device_config(self, only_cpu) -> tuple:
|
43 |
+
if torch.cuda.is_available() and not only_cpu:
|
44 |
+
i_device = int(self.device.split(":")[-1])
|
45 |
+
self.gpu_name = torch.cuda.get_device_name(i_device)
|
46 |
+
if (
|
47 |
+
("16" in self.gpu_name and "V100" not in self.gpu_name.upper())
|
48 |
+
or "P40" in self.gpu_name.upper()
|
49 |
+
or "1060" in self.gpu_name
|
50 |
+
or "1070" in self.gpu_name
|
51 |
+
or "1080" in self.gpu_name
|
52 |
+
):
|
53 |
+
logger.info(
|
54 |
+
"16/10 Series GPUs and P40 excel "
|
55 |
+
"in single-precision tasks."
|
56 |
+
)
|
57 |
+
self.is_half = False
|
58 |
+
else:
|
59 |
+
self.gpu_name = None
|
60 |
+
self.gpu_mem = int(
|
61 |
+
torch.cuda.get_device_properties(i_device).total_memory
|
62 |
+
/ 1024
|
63 |
+
/ 1024
|
64 |
+
/ 1024
|
65 |
+
+ 0.4
|
66 |
+
)
|
67 |
+
elif torch.backends.mps.is_available() and not only_cpu:
|
68 |
+
logger.info("Supported N-card not found, using MPS for inference")
|
69 |
+
self.device = "mps"
|
70 |
+
else:
|
71 |
+
logger.info("No supported N-card found, using CPU for inference")
|
72 |
+
self.device = "cpu"
|
73 |
+
self.is_half = False
|
74 |
+
|
75 |
+
if self.n_cpu == 0:
|
76 |
+
self.n_cpu = os.cpu_count()
|
77 |
+
|
78 |
+
if self.is_half:
|
79 |
+
# 6GB VRAM configuration
|
80 |
+
x_pad = 3
|
81 |
+
x_query = 10
|
82 |
+
x_center = 60
|
83 |
+
x_max = 65
|
84 |
+
else:
|
85 |
+
# 5GB VRAM configuration
|
86 |
+
x_pad = 1
|
87 |
+
x_query = 6
|
88 |
+
x_center = 38
|
89 |
+
x_max = 41
|
90 |
+
|
91 |
+
if self.gpu_mem is not None and self.gpu_mem <= 4:
|
92 |
+
x_pad = 1
|
93 |
+
x_query = 5
|
94 |
+
x_center = 30
|
95 |
+
x_max = 32
|
96 |
+
|
97 |
+
logger.info(
|
98 |
+
f"Config: Device is {self.device}, "
|
99 |
+
f"half precision is {self.is_half}"
|
100 |
+
)
|
101 |
+
|
102 |
+
return x_pad, x_query, x_center, x_max
|
103 |
+
|
104 |
+
|
105 |
+
BASE_DOWNLOAD_LINK = "https://huggingface.co/r3gm/sonitranslate_voice_models/resolve/main/"
|
106 |
+
BASE_MODELS = [
|
107 |
+
"hubert_base.pt",
|
108 |
+
"rmvpe.pt"
|
109 |
+
]
|
110 |
+
BASE_DIR = "."
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
def load_hu_bert(config, hubert_path=None):
|
117 |
+
from fairseq2 import checkpoint_utils
|
118 |
+
|
119 |
+
if hubert_path is None:
|
120 |
+
hubert_path = ""
|
121 |
+
if not os.path.exists(hubert_path):
|
122 |
+
for id_model in BASE_MODELS:
|
123 |
+
download_manager(
|
124 |
+
os.path.join(BASE_DOWNLOAD_LINK, id_model), BASE_DIR
|
125 |
+
)
|
126 |
+
hubert_path = "hubert_base.pt"
|
127 |
+
|
128 |
+
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
|
129 |
+
[hubert_path],
|
130 |
+
suffix="",
|
131 |
+
)
|
132 |
+
hubert_model = models[0]
|
133 |
+
hubert_model = hubert_model.to(config.device)
|
134 |
+
if config.is_half:
|
135 |
+
hubert_model = hubert_model.half()
|
136 |
+
else:
|
137 |
+
hubert_model = hubert_model.float()
|
138 |
+
hubert_model.eval()
|
139 |
+
|
140 |
+
return hubert_model
|
141 |
+
|
142 |
+
|
143 |
+
def load_trained_model(model_path, config):
|
144 |
+
|
145 |
+
if not model_path:
|
146 |
+
raise ValueError("No model found")
|
147 |
+
|
148 |
+
logger.info("Loading %s" % model_path)
|
149 |
+
cpt = torch.load(model_path, map_location="cpu")
|
150 |
+
tgt_sr = cpt["config"][-1]
|
151 |
+
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
152 |
+
if_f0 = cpt.get("f0", 1)
|
153 |
+
if if_f0 == 0:
|
154 |
+
# protect to 0.5 need?
|
155 |
+
pass
|
156 |
+
|
157 |
+
version = cpt.get("version", "v1")
|
158 |
+
if version == "v1":
|
159 |
+
if if_f0 == 1:
|
160 |
+
net_g = SynthesizerTrnMs256NSFsid(
|
161 |
+
*cpt["config"], is_half=config.is_half
|
162 |
+
)
|
163 |
+
else:
|
164 |
+
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
165 |
+
elif version == "v2":
|
166 |
+
if if_f0 == 1:
|
167 |
+
net_g = SynthesizerTrnMs768NSFsid(
|
168 |
+
*cpt["config"], is_half=config.is_half
|
169 |
+
)
|
170 |
+
else:
|
171 |
+
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
172 |
+
del net_g.enc_q
|
173 |
+
|
174 |
+
net_g.load_state_dict(cpt["weight"], strict=False)
|
175 |
+
net_g.eval().to(config.device)
|
176 |
+
|
177 |
+
if config.is_half:
|
178 |
+
net_g = net_g.half()
|
179 |
+
else:
|
180 |
+
net_g = net_g.float()
|
181 |
+
|
182 |
+
vc = VC(tgt_sr, config)
|
183 |
+
n_spk = cpt["config"][-3]
|
184 |
+
|
185 |
+
return n_spk, tgt_sr, net_g, vc, cpt, version
|
186 |
+
|
187 |
+
|
188 |
+
class BaseLoader:
|
189 |
+
def __init__(self, only_cpu=False, hubert_path=None, rmvpe_path=None):
|
190 |
+
self.model_config = {}
|
191 |
+
self.config = None
|
192 |
+
self.cache_model = {}
|
193 |
+
self.only_cpu = only_cpu
|
194 |
+
self.hubert_path = hubert_path
|
195 |
+
self.rmvpe_path = rmvpe_path
|
196 |
+
|
197 |
+
def apply_conf(
|
198 |
+
self,
|
199 |
+
tag="base_model",
|
200 |
+
file_model="",
|
201 |
+
pitch_algo="pm",
|
202 |
+
pitch_lvl=0,
|
203 |
+
file_index="",
|
204 |
+
index_influence=0.66,
|
205 |
+
respiration_median_filtering=3,
|
206 |
+
envelope_ratio=0.25,
|
207 |
+
consonant_breath_protection=0.33,
|
208 |
+
resample_sr=0,
|
209 |
+
file_pitch_algo="",
|
210 |
+
):
|
211 |
+
|
212 |
+
if not file_model:
|
213 |
+
raise ValueError("Model not found")
|
214 |
+
|
215 |
+
if file_index is None:
|
216 |
+
file_index = ""
|
217 |
+
|
218 |
+
if file_pitch_algo is None:
|
219 |
+
file_pitch_algo = ""
|
220 |
+
|
221 |
+
if not self.config:
|
222 |
+
self.config = Config(self.only_cpu)
|
223 |
+
self.hu_bert_model = None
|
224 |
+
self.model_pitch_estimator = None
|
225 |
+
|
226 |
+
self.model_config[tag] = {
|
227 |
+
"file_model": file_model,
|
228 |
+
"pitch_algo": pitch_algo,
|
229 |
+
"pitch_lvl": pitch_lvl, # no decimal
|
230 |
+
"file_index": file_index,
|
231 |
+
"index_influence": index_influence,
|
232 |
+
"respiration_median_filtering": respiration_median_filtering,
|
233 |
+
"envelope_ratio": envelope_ratio,
|
234 |
+
"consonant_breath_protection": consonant_breath_protection,
|
235 |
+
"resample_sr": resample_sr,
|
236 |
+
"file_pitch_algo": file_pitch_algo,
|
237 |
+
}
|
238 |
+
return f"CONFIGURATION APPLIED FOR {tag}: {file_model}"
|
239 |
+
|
240 |
+
def infer(
|
241 |
+
self,
|
242 |
+
task_id,
|
243 |
+
params,
|
244 |
+
# load model
|
245 |
+
n_spk,
|
246 |
+
tgt_sr,
|
247 |
+
net_g,
|
248 |
+
pipe,
|
249 |
+
cpt,
|
250 |
+
version,
|
251 |
+
if_f0,
|
252 |
+
# load index
|
253 |
+
index_rate,
|
254 |
+
index,
|
255 |
+
big_npy,
|
256 |
+
# load f0 file
|
257 |
+
inp_f0,
|
258 |
+
# audio file
|
259 |
+
input_audio_path,
|
260 |
+
overwrite,
|
261 |
+
type_output,
|
262 |
+
):
|
263 |
+
|
264 |
+
f0_method = params["pitch_algo"]
|
265 |
+
f0_up_key = params["pitch_lvl"]
|
266 |
+
filter_radius = params["respiration_median_filtering"]
|
267 |
+
resample_sr = params["resample_sr"]
|
268 |
+
rms_mix_rate = params["envelope_ratio"]
|
269 |
+
protect = params["consonant_breath_protection"]
|
270 |
+
base_sr = 16000
|
271 |
+
|
272 |
+
if isinstance(input_audio_path, tuple):
|
273 |
+
if f0_method == "harvest":
|
274 |
+
raise ValueError("Harvest not support from array")
|
275 |
+
audio = input_audio_path[0]
|
276 |
+
source_sr = input_audio_path[1]
|
277 |
+
if source_sr != base_sr:
|
278 |
+
audio = librosa.resample(
|
279 |
+
audio.astype(np.float32),
|
280 |
+
orig_sr=source_sr,
|
281 |
+
target_sr=base_sr
|
282 |
+
)
|
283 |
+
audio = audio.astype(np.float32).flatten()
|
284 |
+
elif not os.path.exists(input_audio_path):
|
285 |
+
raise ValueError(
|
286 |
+
"The audio file was not found or is not "
|
287 |
+
f"a valid file: {input_audio_path}"
|
288 |
+
)
|
289 |
+
else:
|
290 |
+
audio = load_audio(input_audio_path, base_sr)
|
291 |
+
|
292 |
+
f0_up_key = int(f0_up_key)
|
293 |
+
|
294 |
+
# Normalize audio
|
295 |
+
audio_max = np.abs(audio).max() / 0.95
|
296 |
+
if audio_max > 1:
|
297 |
+
audio /= audio_max
|
298 |
+
|
299 |
+
times = [0, 0, 0]
|
300 |
+
|
301 |
+
# filters audio signal, pads it, computes sliding window sums,
|
302 |
+
# and extracts optimized time indices
|
303 |
+
audio = signal.filtfilt(bh, ah, audio)
|
304 |
+
audio_pad = np.pad(
|
305 |
+
audio, (pipe.window // 2, pipe.window // 2), mode="reflect"
|
306 |
+
)
|
307 |
+
opt_ts = []
|
308 |
+
if audio_pad.shape[0] > pipe.t_max:
|
309 |
+
audio_sum = np.zeros_like(audio)
|
310 |
+
for i in range(pipe.window):
|
311 |
+
audio_sum += audio_pad[i:i - pipe.window]
|
312 |
+
for t in range(pipe.t_center, audio.shape[0], pipe.t_center):
|
313 |
+
opt_ts.append(
|
314 |
+
t
|
315 |
+
- pipe.t_query
|
316 |
+
+ np.where(
|
317 |
+
np.abs(audio_sum[t - pipe.t_query: t + pipe.t_query])
|
318 |
+
== np.abs(audio_sum[t - pipe.t_query: t + pipe.t_query]).min()
|
319 |
+
)[0][0]
|
320 |
+
)
|
321 |
+
|
322 |
+
s = 0
|
323 |
+
audio_opt = []
|
324 |
+
t = None
|
325 |
+
t1 = ttime()
|
326 |
+
|
327 |
+
sid_value = 0
|
328 |
+
sid = torch.tensor(sid_value, device=pipe.device).unsqueeze(0).long()
|
329 |
+
|
330 |
+
# Pads audio symmetrically, calculates length divided by window size.
|
331 |
+
audio_pad = np.pad(audio, (pipe.t_pad, pipe.t_pad), mode="reflect")
|
332 |
+
p_len = audio_pad.shape[0] // pipe.window
|
333 |
+
|
334 |
+
# Estimates pitch from audio signal
|
335 |
+
pitch, pitchf = None, None
|
336 |
+
if if_f0 == 1:
|
337 |
+
pitch, pitchf = pipe.get_f0(
|
338 |
+
input_audio_path,
|
339 |
+
audio_pad,
|
340 |
+
p_len,
|
341 |
+
f0_up_key,
|
342 |
+
f0_method,
|
343 |
+
filter_radius,
|
344 |
+
inp_f0,
|
345 |
+
)
|
346 |
+
pitch = pitch[:p_len]
|
347 |
+
pitchf = pitchf[:p_len]
|
348 |
+
if pipe.device == "mps":
|
349 |
+
pitchf = pitchf.astype(np.float32)
|
350 |
+
pitch = torch.tensor(
|
351 |
+
pitch, device=pipe.device
|
352 |
+
).unsqueeze(0).long()
|
353 |
+
pitchf = torch.tensor(
|
354 |
+
pitchf, device=pipe.device
|
355 |
+
).unsqueeze(0).float()
|
356 |
+
|
357 |
+
t2 = ttime()
|
358 |
+
times[1] += t2 - t1
|
359 |
+
for t in opt_ts:
|
360 |
+
t = t // pipe.window * pipe.window
|
361 |
+
if if_f0 == 1:
|
362 |
+
pitch_slice = pitch[
|
363 |
+
:, s // pipe.window: (t + pipe.t_pad2) // pipe.window
|
364 |
+
]
|
365 |
+
pitchf_slice = pitchf[
|
366 |
+
:, s // pipe.window: (t + pipe.t_pad2) // pipe.window
|
367 |
+
]
|
368 |
+
else:
|
369 |
+
pitch_slice = None
|
370 |
+
pitchf_slice = None
|
371 |
+
|
372 |
+
audio_slice = audio_pad[s:t + pipe.t_pad2 + pipe.window]
|
373 |
+
audio_opt.append(
|
374 |
+
pipe.vc(
|
375 |
+
self.hu_bert_model,
|
376 |
+
net_g,
|
377 |
+
sid,
|
378 |
+
audio_slice,
|
379 |
+
pitch_slice,
|
380 |
+
pitchf_slice,
|
381 |
+
times,
|
382 |
+
index,
|
383 |
+
big_npy,
|
384 |
+
index_rate,
|
385 |
+
version,
|
386 |
+
protect,
|
387 |
+
)[pipe.t_pad_tgt:-pipe.t_pad_tgt]
|
388 |
+
)
|
389 |
+
s = t
|
390 |
+
|
391 |
+
pitch_end_slice = pitch[
|
392 |
+
:, t // pipe.window:
|
393 |
+
] if t is not None else pitch
|
394 |
+
pitchf_end_slice = pitchf[
|
395 |
+
:, t // pipe.window:
|
396 |
+
] if t is not None else pitchf
|
397 |
+
|
398 |
+
audio_opt.append(
|
399 |
+
pipe.vc(
|
400 |
+
self.hu_bert_model,
|
401 |
+
net_g,
|
402 |
+
sid,
|
403 |
+
audio_pad[t:],
|
404 |
+
pitch_end_slice,
|
405 |
+
pitchf_end_slice,
|
406 |
+
times,
|
407 |
+
index,
|
408 |
+
big_npy,
|
409 |
+
index_rate,
|
410 |
+
version,
|
411 |
+
protect,
|
412 |
+
)[pipe.t_pad_tgt:-pipe.t_pad_tgt]
|
413 |
+
)
|
414 |
+
|
415 |
+
audio_opt = np.concatenate(audio_opt)
|
416 |
+
if rms_mix_rate != 1:
|
417 |
+
audio_opt = change_rms(
|
418 |
+
audio, 16000, audio_opt, tgt_sr, rms_mix_rate
|
419 |
+
)
|
420 |
+
if resample_sr >= 16000 and tgt_sr != resample_sr:
|
421 |
+
audio_opt = librosa.resample(
|
422 |
+
audio_opt, orig_sr=tgt_sr, target_sr=resample_sr
|
423 |
+
)
|
424 |
+
audio_max = np.abs(audio_opt).max() / 0.99
|
425 |
+
max_int16 = 32768
|
426 |
+
if audio_max > 1:
|
427 |
+
max_int16 /= audio_max
|
428 |
+
audio_opt = (audio_opt * max_int16).astype(np.int16)
|
429 |
+
del pitch, pitchf, sid
|
430 |
+
if torch.cuda.is_available():
|
431 |
+
torch.cuda.empty_cache()
|
432 |
+
|
433 |
+
if tgt_sr != resample_sr >= 16000:
|
434 |
+
final_sr = resample_sr
|
435 |
+
else:
|
436 |
+
final_sr = tgt_sr
|
437 |
+
|
438 |
+
"""
|
439 |
+
"Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % (
|
440 |
+
times[0],
|
441 |
+
times[1],
|
442 |
+
times[2],
|
443 |
+
), (final_sr, audio_opt)
|
444 |
+
|
445 |
+
"""
|
446 |
+
|
447 |
+
if type_output == "array":
|
448 |
+
return audio_opt, final_sr
|
449 |
+
|
450 |
+
if overwrite:
|
451 |
+
output_audio_path = input_audio_path # Overwrite
|
452 |
+
else:
|
453 |
+
basename = os.path.basename(input_audio_path)
|
454 |
+
dirname = os.path.dirname(input_audio_path)
|
455 |
+
|
456 |
+
new_basename = basename.split(
|
457 |
+
'.')[0] + "_edited." + basename.split('.')[-1]
|
458 |
+
new_path = os.path.join(dirname, new_basename)
|
459 |
+
|
460 |
+
output_audio_path = new_path
|
461 |
+
|
462 |
+
# Save file
|
463 |
+
if type_output:
|
464 |
+
output_audio_path = os.path.splitext(
|
465 |
+
output_audio_path
|
466 |
+
)[0]+f".{type_output}"
|
467 |
+
|
468 |
+
try:
|
469 |
+
sf.write(
|
470 |
+
file=output_audio_path,
|
471 |
+
samplerate=final_sr,
|
472 |
+
data=audio_opt
|
473 |
+
)
|
474 |
+
except Exception as e:
|
475 |
+
logger.error(e)
|
476 |
+
logger.error("Error saving file, trying with WAV format")
|
477 |
+
output_audio_path = os.path.splitext(output_audio_path)[0]+".wav"
|
478 |
+
sf.write(
|
479 |
+
file=output_audio_path,
|
480 |
+
samplerate=final_sr,
|
481 |
+
data=audio_opt
|
482 |
+
)
|
483 |
+
|
484 |
+
logger.info(str(output_audio_path))
|
485 |
+
|
486 |
+
self.model_config[task_id]["result"].append(output_audio_path)
|
487 |
+
self.output_list.append(output_audio_path)
|
488 |
+
|
489 |
+
def run_threads(self, threads):
|
490 |
+
# Start threads
|
491 |
+
for thread in threads:
|
492 |
+
thread.start()
|
493 |
+
|
494 |
+
# Wait for all threads to finish
|
495 |
+
for thread in threads:
|
496 |
+
thread.join()
|
497 |
+
|
498 |
+
gc.collect()
|
499 |
+
torch.cuda.empty_cache()
|
500 |
+
|
501 |
+
def unload_models(self):
|
502 |
+
self.hu_bert_model = None
|
503 |
+
self.model_pitch_estimator = None
|
504 |
+
self.model_vc = {}
|
505 |
+
self.cache_model = {}
|
506 |
+
gc.collect()
|
507 |
+
torch.cuda.empty_cache()
|
508 |
+
|
509 |
+
def __call__(
|
510 |
+
self,
|
511 |
+
audio_files=[],
|
512 |
+
tag_list=[],
|
513 |
+
overwrite=False,
|
514 |
+
parallel_workers=1,
|
515 |
+
type_output=None, # ["mp3", "wav", "ogg", "flac"]
|
516 |
+
):
|
517 |
+
logger.info(f"Parallel workers: {str(parallel_workers)}")
|
518 |
+
|
519 |
+
self.output_list = []
|
520 |
+
|
521 |
+
if not self.model_config:
|
522 |
+
raise ValueError("No model has been configured for inference")
|
523 |
+
|
524 |
+
if isinstance(audio_files, str):
|
525 |
+
audio_files = [audio_files]
|
526 |
+
if isinstance(tag_list, str):
|
527 |
+
tag_list = [tag_list]
|
528 |
+
|
529 |
+
if not audio_files:
|
530 |
+
raise ValueError("No audio found to convert")
|
531 |
+
if not tag_list:
|
532 |
+
tag_list = [list(self.model_config.keys())[-1]] * len(audio_files)
|
533 |
+
|
534 |
+
if len(audio_files) > len(tag_list):
|
535 |
+
logger.info("Extend tag list to match audio files")
|
536 |
+
extend_number = len(audio_files) - len(tag_list)
|
537 |
+
tag_list.extend([tag_list[0]] * extend_number)
|
538 |
+
|
539 |
+
if len(audio_files) < len(tag_list):
|
540 |
+
logger.info("Cut list tags")
|
541 |
+
tag_list = tag_list[:len(audio_files)]
|
542 |
+
|
543 |
+
tag_file_pairs = list(zip(tag_list, audio_files))
|
544 |
+
sorted_tag_file = sorted(tag_file_pairs, key=lambda x: x[0])
|
545 |
+
|
546 |
+
# Base params
|
547 |
+
if not self.hu_bert_model:
|
548 |
+
self.hu_bert_model = load_hu_bert(self.config, self.hubert_path)
|
549 |
+
|
550 |
+
cache_params = None
|
551 |
+
threads = []
|
552 |
+
progress_bar = tqdm(total=len(tag_list), desc="Progress")
|
553 |
+
for i, (id_tag, input_audio_path) in enumerate(sorted_tag_file):
|
554 |
+
|
555 |
+
if id_tag not in self.model_config.keys():
|
556 |
+
logger.info(
|
557 |
+
f"No configured model for {id_tag} with {input_audio_path}"
|
558 |
+
)
|
559 |
+
continue
|
560 |
+
|
561 |
+
if (
|
562 |
+
len(threads) >= parallel_workers
|
563 |
+
or cache_params != id_tag
|
564 |
+
and cache_params is not None
|
565 |
+
):
|
566 |
+
|
567 |
+
self.run_threads(threads)
|
568 |
+
progress_bar.update(len(threads))
|
569 |
+
|
570 |
+
threads = []
|
571 |
+
|
572 |
+
if cache_params != id_tag:
|
573 |
+
|
574 |
+
self.model_config[id_tag]["result"] = []
|
575 |
+
|
576 |
+
# Unload previous
|
577 |
+
(
|
578 |
+
n_spk,
|
579 |
+
tgt_sr,
|
580 |
+
net_g,
|
581 |
+
pipe,
|
582 |
+
cpt,
|
583 |
+
version,
|
584 |
+
if_f0,
|
585 |
+
index_rate,
|
586 |
+
index,
|
587 |
+
big_npy,
|
588 |
+
inp_f0,
|
589 |
+
) = [None] * 11
|
590 |
+
gc.collect()
|
591 |
+
torch.cuda.empty_cache()
|
592 |
+
|
593 |
+
# Model params
|
594 |
+
params = self.model_config[id_tag]
|
595 |
+
|
596 |
+
model_path = params["file_model"]
|
597 |
+
f0_method = params["pitch_algo"]
|
598 |
+
file_index = params["file_index"]
|
599 |
+
index_rate = params["index_influence"]
|
600 |
+
f0_file = params["file_pitch_algo"]
|
601 |
+
|
602 |
+
# Load model
|
603 |
+
(
|
604 |
+
n_spk,
|
605 |
+
tgt_sr,
|
606 |
+
net_g,
|
607 |
+
pipe,
|
608 |
+
cpt,
|
609 |
+
version
|
610 |
+
) = load_trained_model(model_path, self.config)
|
611 |
+
if_f0 = cpt.get("f0", 1) # pitch data
|
612 |
+
|
613 |
+
# Load index
|
614 |
+
if os.path.exists(file_index) and index_rate != 0:
|
615 |
+
try:
|
616 |
+
index = faiss.read_index(file_index)
|
617 |
+
big_npy = index.reconstruct_n(0, index.ntotal)
|
618 |
+
except Exception as error:
|
619 |
+
logger.error(f"Index: {str(error)}")
|
620 |
+
index_rate = 0
|
621 |
+
index = big_npy = None
|
622 |
+
else:
|
623 |
+
logger.warning("File index not found")
|
624 |
+
index_rate = 0
|
625 |
+
index = big_npy = None
|
626 |
+
|
627 |
+
# Load f0 file
|
628 |
+
inp_f0 = None
|
629 |
+
if os.path.exists(f0_file):
|
630 |
+
try:
|
631 |
+
with open(f0_file, "r") as f:
|
632 |
+
lines = f.read().strip("\n").split("\n")
|
633 |
+
inp_f0 = []
|
634 |
+
for line in lines:
|
635 |
+
inp_f0.append([float(i) for i in line.split(",")])
|
636 |
+
inp_f0 = np.array(inp_f0, dtype="float32")
|
637 |
+
except Exception as error:
|
638 |
+
logger.error(f"f0 file: {str(error)}")
|
639 |
+
|
640 |
+
if "rmvpe" in f0_method:
|
641 |
+
if not self.model_pitch_estimator:
|
642 |
+
from infer_rvc_python.lib.rmvpe import RMVPE
|
643 |
+
|
644 |
+
logger.info("Loading vocal pitch estimator model")
|
645 |
+
if self.rmvpe_path is None:
|
646 |
+
self.rmvpe_path = ""
|
647 |
+
rm_local_path = "rmvpe.pt"
|
648 |
+
if os.path.exists(self.rmvpe_path):
|
649 |
+
rm_local_path = self.rmvpe_path
|
650 |
+
self.model_pitch_estimator = RMVPE(
|
651 |
+
rm_local_path,
|
652 |
+
is_half=self.config.is_half,
|
653 |
+
device=self.config.device
|
654 |
+
)
|
655 |
+
|
656 |
+
pipe.model_rmvpe = self.model_pitch_estimator
|
657 |
+
|
658 |
+
cache_params = id_tag
|
659 |
+
|
660 |
+
# self.infer(
|
661 |
+
# id_tag,
|
662 |
+
# params,
|
663 |
+
# # load model
|
664 |
+
# n_spk,
|
665 |
+
# tgt_sr,
|
666 |
+
# net_g,
|
667 |
+
# pipe,
|
668 |
+
# cpt,
|
669 |
+
# version,
|
670 |
+
# if_f0,
|
671 |
+
# # load index
|
672 |
+
# index_rate,
|
673 |
+
# index,
|
674 |
+
# big_npy,
|
675 |
+
# # load f0 file
|
676 |
+
# inp_f0,
|
677 |
+
# # output file
|
678 |
+
# input_audio_path,
|
679 |
+
# overwrite,
|
680 |
+
# type_output,
|
681 |
+
# )
|
682 |
+
|
683 |
+
thread = threading.Thread(
|
684 |
+
target=self.infer,
|
685 |
+
args=(
|
686 |
+
id_tag,
|
687 |
+
params,
|
688 |
+
# loaded model
|
689 |
+
n_spk,
|
690 |
+
tgt_sr,
|
691 |
+
net_g,
|
692 |
+
pipe,
|
693 |
+
cpt,
|
694 |
+
version,
|
695 |
+
if_f0,
|
696 |
+
# loaded index
|
697 |
+
index_rate,
|
698 |
+
index,
|
699 |
+
big_npy,
|
700 |
+
# loaded f0 file
|
701 |
+
inp_f0,
|
702 |
+
# audio file
|
703 |
+
input_audio_path,
|
704 |
+
overwrite,
|
705 |
+
type_output,
|
706 |
+
)
|
707 |
+
)
|
708 |
+
|
709 |
+
threads.append(thread)
|
710 |
+
|
711 |
+
# Run last
|
712 |
+
if threads:
|
713 |
+
self.run_threads(threads)
|
714 |
+
|
715 |
+
progress_bar.update(len(threads))
|
716 |
+
progress_bar.close()
|
717 |
+
|
718 |
+
final_result = []
|
719 |
+
valid_tags = set(tag_list)
|
720 |
+
for tag in valid_tags:
|
721 |
+
if (
|
722 |
+
tag in self.model_config.keys()
|
723 |
+
and "result" in self.model_config[tag].keys()
|
724 |
+
):
|
725 |
+
final_result.extend(self.model_config[tag]["result"])
|
726 |
+
|
727 |
+
return final_result
|
728 |
+
|
729 |
+
def generate_from_cache(
|
730 |
+
self,
|
731 |
+
audio_data=None, # str or tuple (<array data>,<int sampling rate>)
|
732 |
+
tag=None,
|
733 |
+
reload=False,
|
734 |
+
):
|
735 |
+
|
736 |
+
if not self.model_config:
|
737 |
+
raise ValueError("No model has been configured for inference")
|
738 |
+
|
739 |
+
if not audio_data:
|
740 |
+
raise ValueError(
|
741 |
+
"An audio file or tuple with "
|
742 |
+
"(<numpy data audio>,<sampling rate>) is needed"
|
743 |
+
)
|
744 |
+
|
745 |
+
# Base params
|
746 |
+
if not self.hu_bert_model:
|
747 |
+
self.hu_bert_model = load_hu_bert(self.config, self.hubert_path)
|
748 |
+
|
749 |
+
if tag not in self.model_config.keys():
|
750 |
+
raise ValueError(
|
751 |
+
f"No configured model for {tag}"
|
752 |
+
)
|
753 |
+
|
754 |
+
now_data = self.model_config[tag]
|
755 |
+
now_data["tag"] = tag
|
756 |
+
|
757 |
+
if self.cache_model != now_data and not reload:
|
758 |
+
|
759 |
+
# Unload previous
|
760 |
+
self.model_vc = {}
|
761 |
+
gc.collect()
|
762 |
+
torch.cuda.empty_cache()
|
763 |
+
|
764 |
+
model_path = now_data["file_model"]
|
765 |
+
f0_method = now_data["pitch_algo"]
|
766 |
+
file_index = now_data["file_index"]
|
767 |
+
index_rate = now_data["index_influence"]
|
768 |
+
f0_file = now_data["file_pitch_algo"]
|
769 |
+
|
770 |
+
# Load model
|
771 |
+
(
|
772 |
+
self.model_vc["n_spk"],
|
773 |
+
self.model_vc["tgt_sr"],
|
774 |
+
self.model_vc["net_g"],
|
775 |
+
self.model_vc["pipe"],
|
776 |
+
self.model_vc["cpt"],
|
777 |
+
self.model_vc["version"]
|
778 |
+
) = load_trained_model(model_path, self.config)
|
779 |
+
self.model_vc["if_f0"] = self.model_vc["cpt"].get("f0", 1)
|
780 |
+
|
781 |
+
# Load index
|
782 |
+
if os.path.exists(file_index) and index_rate != 0:
|
783 |
+
try:
|
784 |
+
index = faiss.read_index(file_index)
|
785 |
+
big_npy = index.reconstruct_n(0, index.ntotal)
|
786 |
+
except Exception as error:
|
787 |
+
logger.error(f"Index: {str(error)}")
|
788 |
+
index_rate = 0
|
789 |
+
index = big_npy = None
|
790 |
+
else:
|
791 |
+
logger.warning("File index not found")
|
792 |
+
index_rate = 0
|
793 |
+
index = big_npy = None
|
794 |
+
|
795 |
+
self.model_vc["index_rate"] = index_rate
|
796 |
+
self.model_vc["index"] = index
|
797 |
+
self.model_vc["big_npy"] = big_npy
|
798 |
+
|
799 |
+
# Load f0 file
|
800 |
+
inp_f0 = None
|
801 |
+
if os.path.exists(f0_file):
|
802 |
+
try:
|
803 |
+
with open(f0_file, "r") as f:
|
804 |
+
lines = f.read().strip("\n").split("\n")
|
805 |
+
inp_f0 = []
|
806 |
+
for line in lines:
|
807 |
+
inp_f0.append([float(i) for i in line.split(",")])
|
808 |
+
inp_f0 = np.array(inp_f0, dtype="float32")
|
809 |
+
except Exception as error:
|
810 |
+
logger.error(f"f0 file: {str(error)}")
|
811 |
+
|
812 |
+
self.model_vc["inp_f0"] = inp_f0
|
813 |
+
|
814 |
+
if "rmvpe" in f0_method:
|
815 |
+
if not self.model_pitch_estimator:
|
816 |
+
from infer_rvc_python.lib.rmvpe import RMVPE
|
817 |
+
|
818 |
+
logger.info("Loading vocal pitch estimator model")
|
819 |
+
if self.rmvpe_path is None:
|
820 |
+
self.rmvpe_path = ""
|
821 |
+
rm_local_path = "rmvpe.pt"
|
822 |
+
if os.path.exists(self.rmvpe_path):
|
823 |
+
rm_local_path = self.rmvpe_path
|
824 |
+
self.model_pitch_estimator = RMVPE(
|
825 |
+
rm_local_path,
|
826 |
+
is_half=self.config.is_half,
|
827 |
+
device=self.config.device
|
828 |
+
)
|
829 |
+
|
830 |
+
self.model_vc["pipe"].model_rmvpe = self.model_pitch_estimator
|
831 |
+
|
832 |
+
self.cache_model = copy.deepcopy(now_data)
|
833 |
+
|
834 |
+
return self.infer(
|
835 |
+
tag,
|
836 |
+
now_data,
|
837 |
+
# load model
|
838 |
+
self.model_vc["n_spk"],
|
839 |
+
self.model_vc["tgt_sr"],
|
840 |
+
self.model_vc["net_g"],
|
841 |
+
self.model_vc["pipe"],
|
842 |
+
self.model_vc["cpt"],
|
843 |
+
self.model_vc["version"],
|
844 |
+
self.model_vc["if_f0"],
|
845 |
+
# load index
|
846 |
+
self.model_vc["index_rate"],
|
847 |
+
self.model_vc["index"],
|
848 |
+
self.model_vc["big_npy"],
|
849 |
+
# load f0 file
|
850 |
+
self.model_vc["inp_f0"],
|
851 |
+
# output file
|
852 |
+
audio_data,
|
853 |
+
False,
|
854 |
+
"array",
|
855 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|