{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff0feda8b00>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684169556707010335, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGi5qL9nTou/NLrAPqOFF78PXhA/ceM5v2EOBT+rfZU/SJgRvwg3er/Exuq+Ja5EPznUEb8fo66/p7Cmvp/pr77+pVY/zu2xPAiiOj+I6He/aeRRvxQ+o7+zJpC/wlnGPp4hhj/1YQM/jzsGwHdiaj+DSL2+cclDvxuOCT9eM2I+bssgwDEDo75dzvQ+LyCtvbxUGb50r/G/XFoPP+IVxD5B65G/R1hOwJ7htT7/yKO/7VKnv2WPAcA+M0s/8bQlPCYDT7/Bmjg8nrVov0cIrb+eIYY/q2j5vwwd9D7szYu/r8taPy5q6L/CIti+BPRCP7DdX79P8/Y+ZAYsvzh4V79FDMy+OIZuQD7vtT/Lbk69vWmWv2w3Dj9LoGy+l6E7v6TT1r+H2q8+rvTuPssnkz/3B9i+Gn/5P9C9kb8Lx+Y+niGGP/VhAz8MHfQ+7M2LvzqQVT4mWEw/dLljPpMsqj42n2W/g4hivlmSFD/qerK8+AtfP0rJjr2C3WE/5K8nPtlEl786JXs98Mx5v7HakL6TU8K+AuaDv7QHuD7hfjk/zNPdvvAKbb/4TIa/o3kMP0RMdL+raPm/DB30PuzNi7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAooRu1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAC/e2vQAAAADZcP6/AAAAAFaJD74AAAAAdbDlPwAAAAAGI7S9AAAAABck9D8AAAAAfFrivQAAAABeD+G/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALTCPNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBFfRz0AAAAA3dwAwAAAAADaN6w9AAAAAF8x5z8AAAAAsNWjPQAAAAA36PY/AAAAAKxOjj0AAAAAbIP9vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOxFsbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBCBbk9AAAAAP//7b8AAAAA90DhvQAAAAAGJfs/AAAAAMTC3r0AAAAAGj//PwAAAACPjaq9AAAAADZi/78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATN6y1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAVxn7PAAAAACtWd+/AAAAAC6QLL0AAAAAavLgPwAAAAD0Pxg9AAAAADyn8T8AAAAAj/OtPAAAAADKt+W/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJfbi+10DEGMAWyUTegDjAF0lEdArCfXlp48l3V9lChoBkdAmab4tthuwWgHTegDaAhHQKwqyhGH58B1fZQoaAZHQJaP6y0KJEZoB03oA2gIR0CsLM1m8M/hdX2UKGgGR0CSThmvW6K+aAdN6ANoCEdArDFLRKHwgHV9lChoBkdAmlFs8kleGGgHTegDaAhHQKw4VBDXvph1fZQoaAZHQJUt7Lidat9oB03oA2gIR0CsOzcHnlnzdX2UKGgGR0CV5VUu+RHPaAdN6ANoCEdArDzi3CsOonV9lChoBkdAiUasxfv4NGgHTegDaAhHQKw/0zOX3QF1fZQoaAZHQI6nTSG8EmpoB03oA2gIR0CsRPy6DoQndX2UKGgGR0CTUejNIK+jaAdN6ANoCEdArEfrTpgTiHV9lChoBkdAlnutHhCMP2gHTegDaAhHQKxJpuVopQV1fZQoaAZHQGppErPMSsdoB03oA2gIR0CsTdLe67NCdX2UKGgGR0CGWrPY4ACGaAdN6ANoCEdArFVCFEiMYXV9lChoBkdAgU2G+sYEXGgHTegDaAhHQKxYM9cKPXF1fZQoaAZHQJhr0blzU7VoB03oA2gIR0CsWes4DLbIdX2UKGgGR0CYE7NXHR1HaAdN6ANoCEdArFznMlkYoHV9lChoBkdAlE78glnh9GgHTegDaAhHQKxiOLfDUEx1fZQoaAZHQIK+tfJFLFpoB03oA2gIR0CsZS3hGYrsdX2UKGgGR0CTrjMFUyYYaAdN6ANoCEdArGbh5C4SYnV9lChoBkdAiZXj8cdYGWgHTegDaAhHQKxqqD3/PxB1fZQoaAZHQIQ/A57w8W9oB03oA2gIR0Cscq7tJFspdX2UKGgGR0CRUiz1bqyGaAdN6ANoCEdArHWpnxri2nV9lChoBkdAlrtT/ZM+NmgHTegDaAhHQKx3WFwkxAV1fZQoaAZHQJqGSWv8qF1oB03oA2gIR0CsekxG+bmVdX2UKGgGR0CaH/IQe3hGaAdN6ANoCEdArH9tFDv3J3V9lChoBkdAluSkHyEtd2gHTegDaAhHQKyCZOARTS91fZQoaAZHQJukab+cYqJoB03oA2gIR0CshCBoduHfdX2UKGgGR0CalB8DSw4baAdN6ANoCEdArIegJ5VwP3V9lChoBkdAnof8aKk2xmgHTegDaAhHQKyPxyI55qx1fZQoaAZHQJwuNyfcvdxoB03oA2gIR0CskvJbdJrddX2UKGgGR0CXc+0OVgQZaAdN6ANoCEdArJSxPTG5tnV9lChoBkdAk/aSSJTESGgHTegDaAhHQKyXoODrZ8N1fZQoaAZHQJxnQyHmA9VoB03oA2gIR0CsnMy8J2MbdX2UKGgGR0CWg7zKLbYcaAdN6ANoCEdArJ+oZAIIGHV9lChoBkdAmUPAwTM7l2gHTegDaAhHQKyhVABT4tZ1fZQoaAZHQJWRO7ZnL7poB03oA2gIR0CspFQBxPwedX2UKGgGR0CVaOm7rcCYaAdN6ANoCEdArKxfyf+S83V9lChoBkdAcXN/mDDjzmgHTegDaAhHQKywByHVPN51fZQoaAZHQJGAx0T101ZoB03oA2gIR0Cssbv24/eMdX2UKGgGR0CWsf7dznzQaAdN6ANoCEdArLS3RmbsnnV9lChoBkdAkkiejdpItmgHTegDaAhHQKy5zVurIYF1fZQoaAZHQJnUDXI2fkFoB03oA2gIR0CsvMnjQzDXdX2UKGgGR0CRoVcQAdXDaAdN6ANoCEdArL6LmEGqxXV9lChoBkdAnAIscuJ1q2gHTegDaAhHQKzBim/nGKh1fZQoaAZHQJngzl+3H7xoB03oA2gIR0CsyPQ9ic5KdX2UKGgGR0CXIOqyWzF/aAdN6ANoCEdArM04bsF+u3V9lChoBkdAm58ex8lXzWgHTegDaAhHQKzO7ta6jFh1fZQoaAZHQJwRDDXOGCZoB03oA2gIR0Cs0drteD3/dX2UKGgGR0CbR6vitJWeaAdN6ANoCEdArNcJKJ2t+3V9lChoBkdAmPT9THbRGGgHTegDaAhHQKzaBlfZ26l1fZQoaAZHQJidBGhEjPhoB03oA2gIR0Cs27g5BC2MdX2UKGgGR0CdK+/9Hc1waAdN6ANoCEdArN6ufNA1N3V9lChoBkdAmnyfLcKw6mgHTegDaAhHQKzlqduHerN1fZQoaAZHQJ1Aj8tPHktoB03oA2gIR0Cs6mIYekpJdX2UKGgGR0CV6Kpda+vhaAdN6ANoCEdArOwXzH0btXV9lChoBkdAmUOcm4RVZWgHTegDaAhHQKzu+67NB4V1fZQoaAZHQJ3ef+WGATZoB03oA2gIR0Cs8//4AS39dX2UKGgGR0CcXwZZjhDPaAdN6ANoCEdArPbt3wCr93V9lChoBkdAl1Ry0a6z3WgHTegDaAhHQKz4pcE/0NB1fZQoaAZHQJriEcNpdrxoB03oA2gIR0Cs+48MuvlmdX2UKGgGR0CY80Ehq0tzaAdN6ANoCEdArQHBFI/Z/XV9lChoBkdAm3ELdznzQWgHTegDaAhHQK0GdPSlWOp1fZQoaAZHQJ5ZtOZb6gxoB03oA2gIR0CtCNXGn4widX2UKGgGR0Cb02rO7g89aAdN6ANoCEdArQvJLZi/f3V9lChoBkdAmXzSIxgy/WgHTegDaAhHQK0Q/hR64Uh1fZQoaAZHQJzG+YoiLVFoB03oA2gIR0CtE+zJ6po9dX2UKGgGR0CZtIcoH9m6aAdN6ANoCEdArRWZlDneSHV9lChoBkdAm/eg9RrJsGgHTegDaAhHQK0YgaDPGAF1fZQoaAZHQJ/M6mCROlBoB03oA2gIR0CtHmnq/ub7dX2UKGgGR0B9ctk5IYm+aAdN6ANoCEdArSMSP8yeqnV9lChoBkdAn5FRoRIz32gHTegDaAhHQK0l6wHJLdx1fZQoaAZHQKAD/yH2ys1oB03oA2gIR0CtKRUKJEYwdX2UKGgGR0CaYQp48lolaAdN6ANoCEdArS469CeEqXV9lChoBkdAn021BUrCnGgHTegDaAhHQK0xJz4k/r11fZQoaAZHQKAPHRHf/FRoB03oA2gIR0CtMt42S+xodX2UKGgGR0Cf2Txe9i+daAdN6ANoCEdArTXeu/1xsHV9lChoBkdAoEGfmFJxvWgHTegDaAhHQK07blEqlP91fZQoaAZHQKBknssxwhpoB03oA2gIR0CtP/r3K0UodX2UKGgGR0CgaENqgyuZaAdN6ANoCEdArUK8c6vJR3V9lChoBkdAm59OsT37DWgHTegDaAhHQK1GV9H+ZPV1fZQoaAZHQJzvUL+glGBoB03oA2gIR0CtS4N8VpK0dX2UKGgGR0CXMg5uqFRHaAdN6ANoCEdArU54XsPatnV9lChoBkdAma0gFkhA4WgHTegDaAhHQK1QJ8Z1mrd1fZQoaAZHQJrC8SBbwBpoB03oA2gIR0CtUxuw5eZ5dX2UKGgGR0CSGv9ZRsMzaAdN6ANoCEdArVhopvxYrHV9lChoBkdAjAhZmI0qIGgHTegDaAhHQK1c0+yquKZ1fZQoaAZHQJ6/AnPVurJoB03oA2gIR0CtX55nlGPQdX2UKGgGR0Ces8x7RfF8aAdN6ANoCEdArWPhBRhttXV9lChoBkdAhwBrCWNWEWgHTegDaAhHQK1pLwZwXIl1fZQoaAZHQIdyitvGZNRoB03oA2gIR0CtbDbnHNordX2UKGgGR0BMS/zBhx5taAdN6ANoCEdArW4P8hs673V9lChoBkdAmmntZNfw7WgHTegDaAhHQK1xLBmf5DZ1fZQoaAZHQJdaSsFMZgpoB03oA2gIR0Ctdo4WtU4rdX2UKGgGR0CHtgrEtNBXaAdN6ANoCEdArXsJiI+GGnV9lChoBkdAgS2eWfK6nWgHTegDaAhHQK195nr6ciJ1fZQoaAZHQJuMq7YkE9toB03oA2gIR0Ctgko371qWdX2UKGgGR0CRH5p/gBLgaAdN6ANoCEdArYe/8qFyrHV9lChoBkdAiW5XnQpnYmgHTegDaAhHQK2K6PGQ0XR1fZQoaAZHQJuMMMG5c1RoB03oA2gIR0CtjKy+g13udX2UKGgGR0CQg2ppN9H+aAdN6ANoCEdArY/BJCjUNXVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}