File size: 15,573 Bytes
a69d066
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f909ac5ee60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f909ac64d40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684309101799374295, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAO/rSPlTiKzxkUBI/O/rSPlTiKzxkUBI/O/rSPlTiKzxkUBI/O/rSPlTiKzxkUBI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAASXepv0nJgr/53d69bS6tv0fAib5sXMg+yvHavIuRsr55Gum+9H66PxIwjz+EMby/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA7+tI+VOIrPGRQEj+ImBA8RQYvuzgH9Ts7+tI+VOIrPGRQEj+ImBA8RQYvuzgH9Ts7+tI+VOIrPGRQEj+ImBA8RQYvuzgH9Ts7+tI+VOIrPGRQEj+ImBA8RQYvuzgH9TuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.41206536 0.01049097 0.57153916]\n [0.41206536 0.01049097 0.57153916]\n [0.41206536 0.01049097 0.57153916]\n [0.41206536 0.01049097 0.57153916]]", "desired_goal": "[[-1.3239528  -1.0217677  -0.10882182]\n [-1.3529793  -0.26904508  0.39133012]\n [-0.02672662 -0.34876665 -0.4552801 ]\n [ 1.4569993   1.1186545  -1.4702611 ]]", "observation": "[[ 0.41206536  0.01049097  0.57153916  0.00882543 -0.00267066  0.00747767]\n [ 0.41206536  0.01049097  0.57153916  0.00882543 -0.00267066  0.00747767]\n [ 0.41206536  0.01049097  0.57153916  0.00882543 -0.00267066  0.00747767]\n [ 0.41206536  0.01049097  0.57153916  0.00882543 -0.00267066  0.00747767]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAz9gfPa6/Cr7duYY9Cj8HPgTUKDy9tB09ar4IvhuZGD7r+Ys+gJ2nvfd3GL42/Nk9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]", "desired_goal": "[[ 0.03902512 -0.13549682  0.06578419]\n [ 0.13207641  0.01030445  0.03850244]\n [-0.13353887  0.14902155  0.2733911 ]\n [-0.08184338 -0.14889513  0.10643809]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkIgpkURPB8CUhpRSlIwBbJRLMowBdJRHQKbqpGAkLQZ1fZQoaAZoCWgPQwhWYTPABRkKwJSGlFKUaBVLMmgWR0Cm6mdv0h/zdX2UKGgGaAloD0MIyEW1iCim/L+UhpRSlGgVSzJoFkdApuopsQ/X5HV9lChoBmgJaA9DCLSvPEhPUf6/lIaUUpRoFUsyaBZHQKbp6MVDa5B1fZQoaAZoCWgPQwj/PXjt0kYBwJSGlFKUaBVLMmgWR0Cm66XBP9DQdX2UKGgGaAloD0MIqwg3GVXG+b+UhpRSlGgVSzJoFkdAputoWk8A73V9lChoBmgJaA9DCM9r7BLVWwHAlIaUUpRoFUsyaBZHQKbrKj1wo9d1fZQoaAZoCWgPQwjEI/HydO4NwJSGlFKUaBVLMmgWR0Cm6uluWKMvdX2UKGgGaAloD0MIrOC3IcZr/L+UhpRSlGgVSzJoFkdApuzLUb1h9nV9lChoBmgJaA9DCMmwijcyzwDAlIaUUpRoFUsyaBZHQKbsjtCzC1t1fZQoaAZoCWgPQwjTwfo/h1kEwJSGlFKUaBVLMmgWR0Cm7FFum78OdX2UKGgGaAloD0MISYWxhSBHA8CUhpRSlGgVSzJoFkdApuwRTMqz7nV9lChoBmgJaA9DCHbgnBGlXQzAlIaUUpRoFUsyaBZHQKbuY4aP0Zp1fZQoaAZoCWgPQwgYsU8AxSgNwJSGlFKUaBVLMmgWR0Cm7ibI91U3dX2UKGgGaAloD0MIGVQbnIi+/b+UhpRSlGgVSzJoFkdApu3peqrBCXV9lChoBmgJaA9DCNfZkH9mUAHAlIaUUpRoFUsyaBZHQKbtqWCVbA11fZQoaAZoCWgPQwisPIGwU2wOwJSGlFKUaBVLMmgWR0Cm8CLNnoPkdX2UKGgGaAloD0MIVOV7RiL0AMCUhpRSlGgVSzJoFkdApu/mTs6aLHV9lChoBmgJaA9DCBqH+l3YugbAlIaUUpRoFUsyaBZHQKbvqQ4CIUJ1fZQoaAZoCWgPQwirzJTW3/IKwJSGlFKUaBVLMmgWR0Cm72nVXmvGdX2UKGgGaAloD0MId9uF5jrNAMCUhpRSlGgVSzJoFkdApvHYXdj5K3V9lChoBmgJaA9DCFpj0AmhYwDAlIaUUpRoFUsyaBZHQKbxm8EFGG51fZQoaAZoCWgPQwgRct7/x4n5v5SGlFKUaBVLMmgWR0Cm8V5FXq7idX2UKGgGaAloD0MIKbAApgwc/b+UhpRSlGgVSzJoFkdApvEeW8h9s3V9lChoBmgJaA9DCF3+Q/rta/+/lIaUUpRoFUsyaBZHQKbzoNWluWN1fZQoaAZoCWgPQwiHwfwVMpfyv5SGlFKUaBVLMmgWR0Cm82Q/5ckddX2UKGgGaAloD0MIDjFe86oO97+UhpRSlGgVSzJoFkdApvMnJo0yg3V9lChoBmgJaA9DCJhr0QK0bfm/lIaUUpRoFUsyaBZHQKby5xz7uUl1fZQoaAZoCWgPQwipFabvNUT5v5SGlFKUaBVLMmgWR0Cm9VbedkJ8dX2UKGgGaAloD0MI+gj84effCsCUhpRSlGgVSzJoFkdApvUaYPXkHXV9lChoBmgJaA9DCHswKT4+QQbAlIaUUpRoFUsyaBZHQKb03Tho/Rp1fZQoaAZoCWgPQwjlm21uTG8CwJSGlFKUaBVLMmgWR0Cm9J2XkYGddX2UKGgGaAloD0MIhsd+FktRBMCUhpRSlGgVSzJoFkdApvcQsmOU+3V9lChoBmgJaA9DCMFu2LYoMwfAlIaUUpRoFUsyaBZHQKb202Yv38J1fZQoaAZoCWgPQwiCyvj3GRfvv5SGlFKUaBVLMmgWR0Cm9pVrhzeXdX2UKGgGaAloD0MItWytLxK6AcCUhpRSlGgVSzJoFkdApvZUwevIO3V9lChoBmgJaA9DCOOqsu+KIAzAlIaUUpRoFUsyaBZHQKb4D6HCXQd1fZQoaAZoCWgPQwgGnRA66FIFwJSGlFKUaBVLMmgWR0Cm99JfYzzmdX2UKGgGaAloD0MI6spneR48B8CUhpRSlGgVSzJoFkdApveUKsuFpXV9lChoBmgJaA9DCFmmXyLeGgTAlIaUUpRoFUsyaBZHQKb3U3Ov+wV1fZQoaAZoCWgPQwgkufyH9Bv0v5SGlFKUaBVLMmgWR0Cm+RH2RJVbdX2UKGgGaAloD0MItrkxPWGJA8CUhpRSlGgVSzJoFkdApvjUnTiKi3V9lChoBmgJaA9DCOoj8IefXwnAlIaUUpRoFUsyaBZHQKb4lpt78el1fZQoaAZoCWgPQwh00ZDxKFX7v5SGlFKUaBVLMmgWR0Cm+FXlS0jUdX2UKGgGaAloD0MIVyJQ/YPI6b+UhpRSlGgVSzJoFkdApvoVNpM6BHV9lChoBmgJaA9DCJ8ENufg2fu/lIaUUpRoFUsyaBZHQKb51+2mYSh1fZQoaAZoCWgPQwi/ub963Lf4v5SGlFKUaBVLMmgWR0Cm+ZnrpqyodX2UKGgGaAloD0MI5zki36VUBcCUhpRSlGgVSzJoFkdApvlZGz8gp3V9lChoBmgJaA9DCAh2/BcI4gTAlIaUUpRoFUsyaBZHQKb7EsunMt91fZQoaAZoCWgPQwi0rPvHQlQBwJSGlFKUaBVLMmgWR0Cm+tW4uscRdX2UKGgGaAloD0MIehfvx+2XAcCUhpRSlGgVSzJoFkdApvqXtnf2snV9lChoBmgJaA9DCIz2eCEdHgzAlIaUUpRoFUsyaBZHQKb6VwNsnAt1fZQoaAZoCWgPQwglrfiGwucAwJSGlFKUaBVLMmgWR0Cm/A1mz0HydX2UKGgGaAloD0MIQgjIl1AhAMCUhpRSlGgVSzJoFkdApvvQHs1KoXV9lChoBmgJaA9DCGeasP1k7AHAlIaUUpRoFUsyaBZHQKb7kjbBXS11fZQoaAZoCWgPQwhWnGotzAICwJSGlFKUaBVLMmgWR0Cm+1GIsRQKdX2UKGgGaAloD0MIWaMeotFdBMCUhpRSlGgVSzJoFkdApv0IEdNnG3V9lChoBmgJaA9DCLsKKT+pdgLAlIaUUpRoFUsyaBZHQKb8yqDK5kN1fZQoaAZoCWgPQwigOIB+3//7v5SGlFKUaBVLMmgWR0Cm/IxusLfDdX2UKGgGaAloD0MI/RLx1vk3AsCUhpRSlGgVSzJoFkdApvxLrX18LXV9lChoBmgJaA9DCFUTRN0HYAXAlIaUUpRoFUsyaBZHQKb+BRtxdY51fZQoaAZoCWgPQwgr+64I/tcAwJSGlFKUaBVLMmgWR0Cm/ce3QUpNdX2UKGgGaAloD0MIOCwN/KjG/L+UhpRSlGgVSzJoFkdApv2JdQfp2XV9lChoBmgJaA9DCAN64c6F0fu/lIaUUpRoFUsyaBZHQKb9SJVsDW91fZQoaAZoCWgPQwgxXB0Acdf+v5SGlFKUaBVLMmgWR0Cm/wBStNi6dX2UKGgGaAloD0MIKEaWzLEcAcCUhpRSlGgVSzJoFkdApv7C97F85XV9lChoBmgJaA9DCG6jAbwFcgDAlIaUUpRoFUsyaBZHQKb+hM495hV1fZQoaAZoCWgPQwhupddmYyX6v5SGlFKUaBVLMmgWR0Cm/kPuPV/ddX2UKGgGaAloD0MIMISc9/8RDMCUhpRSlGgVSzJoFkdApv/0OmR/3HV9lChoBmgJaA9DCEeSIFwBRfu/lIaUUpRoFUsyaBZHQKb/tuuzQeF1fZQoaAZoCWgPQwhrD3uhgG3/v5SGlFKUaBVLMmgWR0Cm/3jRtxdZdX2UKGgGaAloD0MIuagWEcWk97+UhpRSlGgVSzJoFkdApv84GyHEdnV9lChoBmgJaA9DCCU8odef5APAlIaUUpRoFUsyaBZHQKcA6rwOOKh1fZQoaAZoCWgPQwhTXiuhu4QBwJSGlFKUaBVLMmgWR0CnAK1c+qzadX2UKGgGaAloD0MI7L34oj2eAcCUhpRSlGgVSzJoFkdApwBvNxEORXV9lChoBmgJaA9DCBBAahMn9wHAlIaUUpRoFUsyaBZHQKcALkGRmsh1fZQoaAZoCWgPQwjJq3MMyN79v5SGlFKUaBVLMmgWR0CnAdUL2HtXdX2UKGgGaAloD0MI8WQ3M/oRB8CUhpRSlGgVSzJoFkdApwGXoNd7fHV9lChoBmgJaA9DCDwXRnpRewDAlIaUUpRoFUsyaBZHQKcBWUvf0mN1fZQoaAZoCWgPQwjHEAAcexYKwJSGlFKUaBVLMmgWR0CnARhvBJqZdX2UKGgGaAloD0MI1J0nnrNFDMCUhpRSlGgVSzJoFkdApwLDuc+aB3V9lChoBmgJaA9DCM4WEFoPvwHAlIaUUpRoFUsyaBZHQKcChlLeyiV1fZQoaAZoCWgPQwhSEDy+vSsDwJSGlFKUaBVLMmgWR0CnAkgnc+JQdX2UKGgGaAloD0MIKChFK/dCAcCUhpRSlGgVSzJoFkdApwIHYHxBmnV9lChoBmgJaA9DCKW9wRcm0wjAlIaUUpRoFUsyaBZHQKcDuoHcDbJ1fZQoaAZoCWgPQwjxf0dUqI4GwJSGlFKUaBVLMmgWR0CnA30wztTldX2UKGgGaAloD0MInFCIgEMoB8CUhpRSlGgVSzJoFkdApwM/BacI7nV9lChoBmgJaA9DCJmaBG9IgwfAlIaUUpRoFUsyaBZHQKcC/j2i+L51fZQoaAZoCWgPQwjIfECgM+n9v5SGlFKUaBVLMmgWR0CnBLaAWi1zdX2UKGgGaAloD0MI1/fhICFKCcCUhpRSlGgVSzJoFkdApwR5B1LamHV9lChoBmgJaA9DCHB87ZklQQLAlIaUUpRoFUsyaBZHQKcEOvDgqEx1fZQoaAZoCWgPQwgcl3FTA03+v5SGlFKUaBVLMmgWR0CnA/qEFnqWdX2UKGgGaAloD0MIGqN1VDWB/7+UhpRSlGgVSzJoFkdApwXEUXYUWXV9lChoBmgJaA9DCKtf6Xx4lv+/lIaUUpRoFUsyaBZHQKcFhwgDA8B1fZQoaAZoCWgPQwiGHFvPEM76v5SGlFKUaBVLMmgWR0CnBUjmjj7zdX2UKGgGaAloD0MIA7NCke5HAcCUhpRSlGgVSzJoFkdApwUIjY7JXHV9lChoBmgJaA9DCE9cjlcg+vi/lIaUUpRoFUsyaBZHQKcGt0Zm7J51fZQoaAZoCWgPQwiGkzR/TAsAwJSGlFKUaBVLMmgWR0CnBnnmig01dX2UKGgGaAloD0MILev+sRDdAcCUhpRSlGgVSzJoFkdApwY7xLCemXV9lChoBmgJaA9DCGK7e4DuC/i/lIaUUpRoFUsyaBZHQKcF+uZCv5h1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True  True  True]", "bounded_above": "[ True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}