Euron Zhang commited on
Commit
b002923
·
1 Parent(s): 6631475

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -9
README.md CHANGED
@@ -21,7 +21,7 @@ model-index:
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
- value: 0.9225346534653466
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -31,8 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
31
 
32
  This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the food101 dataset.
33
  It achieves the following results on the evaluation set:
34
- - Loss: 0.2749
35
- - Accuracy: 0.9225
36
 
37
  ## Model description
38
 
@@ -60,15 +60,22 @@ The following hyperparameters were used during training:
60
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
  - lr_scheduler_type: linear
62
  - lr_scheduler_warmup_ratio: 0.1
63
- - num_epochs: 3
64
 
65
  ### Training results
66
 
67
- | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
- |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
- | 0.5704 | 1.0 | 1183 | 0.3810 | 0.8905 |
70
- | 0.307 | 2.0 | 2366 | 0.2971 | 0.9149 |
71
- | 0.1213 | 3.0 | 3549 | 0.2749 | 0.9225 |
 
 
 
 
 
 
 
72
 
73
 
74
  ### Framework versions
 
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
+ value: 0.9220198019801981
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
31
 
32
  This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the food101 dataset.
33
  It achieves the following results on the evaluation set:
34
+ - Loss: 0.4401
35
+ - Accuracy: 0.9220
36
 
37
  ## Model description
38
 
 
60
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
  - lr_scheduler_type: linear
62
  - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 10
64
 
65
  ### Training results
66
 
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|
69
+ | 0.0579 | 1.0 | 1183 | 0.4190 | 0.9102 |
70
+ | 0.0129 | 2.0 | 2366 | 0.4179 | 0.9155 |
71
+ | 0.0076 | 3.0 | 3549 | 0.4219 | 0.9198 |
72
+ | 0.0197 | 4.0 | 4732 | 0.4487 | 0.9160 |
73
+ | 0.0104 | 5.0 | 5915 | 0.4414 | 0.9210 |
74
+ | 0.0007 | 6.0 | 7098 | 0.4401 | 0.9220 |
75
+ | 0.0021 | 7.0 | 8281 | 0.4401 | 0.9220 |
76
+ | 0.0015 | 8.0 | 9464 | 0.4401 | 0.9220 |
77
+ | 0.0056 | 9.0 | 10647 | 0.4401 | 0.9220 |
78
+ | 0.0019 | 10.0 | 11830 | 0.4401 | 0.9220 |
79
 
80
 
81
  ### Framework versions