Mpt-Instruct-DotNet-XS / attention.py
Kabumbus's picture
Trained model
5df4390
# Copyright 2022 MosaicML Examples authors
# SPDX-License-Identifier: Apache-2.0
"""Attention layers."""
import math
import warnings
from typing import Optional
import torch
import torch.nn as nn
from einops import rearrange
from torch import nn
from .low_precision_layernorm import LPLayerNorm
def _reset_is_causal(num_query_tokens: int, num_key_tokens: int,
original_is_causal: bool):
if original_is_causal and num_query_tokens != num_key_tokens:
if num_query_tokens != 1:
raise NotImplementedError(
'MosaicGPT does not support query and key with different number of tokens, unless number of query tokens is 1.'
)
else:
return False
return original_is_causal
def scaled_multihead_dot_product_attention(
query,
key,
value,
n_heads,
softmax_scale=None,
attn_bias=None,
key_padding_mask=None,
is_causal=False,
dropout_p=0.0,
training=False,
needs_weights=False,
):
q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads)
k = rearrange(key, 'b s (h d) -> b h d s', h=n_heads) # includes key.t()
v = rearrange(value, 'b s (h d) -> b h s d', h=n_heads)
min_val = torch.finfo(q.dtype).min
b, _, s_q, d = q.shape
s_k = k.size(-1)
if softmax_scale is None:
softmax_scale = 1 / math.sqrt(d)
attn_weight = q.matmul(k) * softmax_scale
if attn_bias is not None:
if (attn_bias.size(-1) != 1 and
attn_bias.size(-1) != s_k) or (attn_bias.size(-2) != 1 and
attn_bias.size(-2) != s_q):
raise RuntimeError(
f'attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}.'
)
attn_weight = attn_weight + attn_bias
if key_padding_mask is not None:
if attn_bias is not None:
warnings.warn(
'Propogating key_padding_mask to the attention module ' +\
'and applying it within the attention module can cause ' +\
'unneccessary computation/memory usage. Consider integrating ' +\
'into attn_bias once and passing that to each attention ' +\
'module instead.'
)
attn_weight = attn_weight.masked_fill(
~key_padding_mask.view((b, 1, 1, s_k)), min_val)
if is_causal:
s = max(s_q, s_k)
causal_mask = attn_weight.new_ones(s, s, dtype=torch.float16)
causal_mask = causal_mask.tril()
causal_mask = causal_mask.to(torch.bool)
causal_mask = ~causal_mask
causal_mask = causal_mask[-s_q:, -s_k:]
attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k),
min_val)
attn_weight = torch.softmax(attn_weight, dim=-1)
if dropout_p:
attn_weight = torch.nn.functional.dropout(attn_weight,
p=dropout_p,
training=training,
inplace=True)
out = attn_weight.matmul(v)
out = rearrange(out, 'b h s d -> b s (h d)')
if needs_weights:
return out, attn_weight
return out, None
def check_valid_inputs(*tensors, valid_dtypes=[torch.float16, torch.bfloat16]):
for tensor in tensors:
if tensor.dtype not in valid_dtypes:
raise TypeError(f'{tensor.dtype=} must be in {valid_dtypes=}.')
if not tensor.is_cuda:
raise TypeError(f'Inputs must be cuda tensors ({tensor.is_cuda=}).')
def flash_attn_fn(
query,
key,
value,
n_heads,
softmax_scale=None,
attn_bias=None,
key_padding_mask=None,
is_causal=False,
dropout_p=0.0,
training=False,
needs_weights=False,
):
try:
from flash_attn import bert_padding, flash_attn_interface
except:
raise RuntimeError('Please install flash_attn==0.2.8')
check_valid_inputs(query, key, value)
if attn_bias is not None:
raise NotImplementedError(f'attn_bias not implemented for flash attn.')
batch_size, seqlen = query.shape[:2]
if key_padding_mask is None:
key_padding_mask = torch.ones_like(key[:, :, 0], dtype=torch.bool)
query_padding_mask = key_padding_mask[:, -query.size(1):]
query_unpad, indices_q, cu_seqlens_q, max_seqlen_q = bert_padding.unpad_input(
query, query_padding_mask)
query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads)
key_unpad, _, cu_seqlens_k, max_seqlen_k = bert_padding.unpad_input(
key, key_padding_mask)
key_unpad = rearrange(key_unpad, 'nnz (h d) -> nnz h d', h=n_heads)
value_unpad, _, _, _ = bert_padding.unpad_input(value, key_padding_mask)
value_unpad = rearrange(value_unpad, 'nnz (h d) -> nnz h d', h=n_heads)
dropout_p = dropout_p if training else 0.0
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
output_unpad = flash_attn_interface.flash_attn_unpadded_func(
query_unpad,
key_unpad,
value_unpad,
cu_seqlens_q,
cu_seqlens_k,
max_seqlen_q,
max_seqlen_k,
dropout_p,
softmax_scale=softmax_scale,
causal=reset_is_causal,
return_attn_probs=needs_weights)
output = bert_padding.pad_input(
rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size,
seqlen)
return output, None
def triton_flash_attn_fn(
query,
key,
value,
n_heads,
softmax_scale=None,
attn_bias=None,
key_padding_mask=None,
is_causal=False,
dropout_p=0.0,
training=False,
needs_weights=False,
):
try:
from flash_attn import flash_attn_triton # type: ignore
except:
raise RuntimeError('Please install flash_attn==0.2.8 and triton==2.0.0.dev20221202.')
check_valid_inputs(query, key, value)
if dropout_p:
raise NotImplementedError(
f'Dropout not implemented for attn_impl: triton.')
if needs_weights:
raise NotImplementedError(
f'attn_impl: triton cannot return attn weights.')
if key_padding_mask is not None:
warnings.warn(
'Propagating key_padding_mask to the attention module ' +\
'and applying it within the attention module can cause ' +\
'unnecessary computation/memory usage. Consider integrating ' +\
'into attn_bias once and passing that to each attention ' +\
'module instead.'
)
b_size, s_k = key_padding_mask.shape[:2]
if attn_bias is None:
attn_bias = query.new_zeros(b_size, 1, 1, s_k)
attn_bias = attn_bias.masked_fill(
~key_padding_mask.view((b_size, 1, 1, s_k)),
torch.finfo(query.dtype).min)
query = rearrange(query, 'b s (h d) -> b s h d', h=n_heads)
key = rearrange(key, 'b s (h d) -> b s h d', h=n_heads)
value = rearrange(value, 'b s (h d) -> b s h d', h=n_heads)
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
attn_output = flash_attn_triton.flash_attn_func(query, key, value,
attn_bias, reset_is_causal,
softmax_scale)
output = attn_output.view(*attn_output.shape[:2], -1)
return output, None
class MultiheadAttention(nn.Module):
"""Multi-head self attention.
Using torch or triton attention implemetation enables user to also use
additive bias.
"""
def __init__(
self,
d_model: int,
n_heads: int,
attn_impl: str = 'triton',
attn_clip_qkv: Optional[float] = None,
attn_qk_ln: bool = False,
softmax_scale: Optional[float] = None,
attn_pdrop: float = 0.0,
low_precision_layernorm: bool = False,
device: Optional[str] = None,
):
super().__init__()
self.attn_impl = attn_impl
self.clip_qkv = attn_clip_qkv
self.attn_qk_ln = attn_qk_ln
self.d_model = d_model
self.n_heads = n_heads
self.softmax_scale = softmax_scale
if self.softmax_scale is None:
self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads)
self.attn_dropout_p = attn_pdrop
self.Wqkv = nn.Linear(self.d_model, 3 * self.d_model, device=device)
# for param init fn; enables shape based init of fused layers
fuse_splits = (d_model, 2 * d_model)
self.Wqkv._fused = (0, fuse_splits) # type: ignore
if self.attn_qk_ln:
layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm
self.q_ln = layernorm_class(self.d_model, device=device)
self.k_ln = layernorm_class(self.d_model, device=device)
if self.attn_impl == 'flash':
self.attn_fn = flash_attn_fn
elif self.attn_impl == 'triton':
self.attn_fn = triton_flash_attn_fn
warnings.warn(
'While `attn_impl: triton` can be faster than `attn_impl: flash` ' +\
'it uses more memory. When training larger models this can trigger ' +\
'alloc retries which hurts performance. If encountered, we recommend ' +\
'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.')
elif self.attn_impl == 'torch':
self.attn_fn = scaled_multihead_dot_product_attention
if torch.cuda.is_available():
warnings.warn(
'Using `attn_impl: torch`. If your model does not use `alibi` or ' +\
'`prefix_lm` we recommend using `attn_impl: flash` otherwise ' +\
'we recommend using `attn_impl: triton`.'
)
else:
raise ValueError(f'{attn_impl=} is an invalid setting.')
self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
self.out_proj._is_residual = True # type: ignore
def forward(self,
x,
past_key_value=None,
attn_bias=None,
attention_mask=None,
is_causal=True,
needs_weights=False):
qkv = self.Wqkv(x)
if self.clip_qkv:
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
query, key, value = qkv.chunk(3, dim=2)
key_padding_mask = attention_mask
if self.attn_qk_ln:
# Applying layernorm to qk
dtype = query.dtype
query = self.q_ln(query).to(dtype)
key = self.k_ln(key).to(dtype)
if past_key_value is not None:
if len(past_key_value) != 0:
key = torch.cat([past_key_value[0], key], dim=1)
value = torch.cat([past_key_value[1], value], dim=1)
past_key_value = (key, value)
if attn_bias is not None:
attn_bias = attn_bias[:, :, -query.size(1):, -key.size(1):]
context, attn_weights = self.attn_fn(
query,
key,
value,
self.n_heads,
softmax_scale=self.softmax_scale,
attn_bias=attn_bias,
key_padding_mask=key_padding_mask,
is_causal=is_causal,
dropout_p=self.attn_dropout_p,
training=self.training,
needs_weights=needs_weights,
)
return self.out_proj(context), attn_weights, past_key_value
def attn_bias_shape(attn_impl, n_heads, seq_len, alibi, prefix_lm, causal,
use_sequence_id):
if attn_impl == 'flash':
return None
elif attn_impl in ['torch', 'triton']:
if alibi:
if (prefix_lm or not causal) or use_sequence_id:
return (1, n_heads, seq_len, seq_len)
return (1, n_heads, 1, seq_len)
elif prefix_lm or use_sequence_id:
return (1, 1, seq_len, seq_len)
return None
else:
raise ValueError(f'{attn_impl=} is an invalid setting.')
def attn_bias(attn_impl,
attn_bias,
n_heads,
seq_len,
causal=False,
alibi=False,
alibi_bias_max=8):
if attn_impl == 'flash':
return None
elif attn_impl in ['torch', 'triton']:
if alibi:
# in place add alibi to attn bias
device, dtype = attn_bias.device, attn_bias.dtype
attn_bias = attn_bias.add(
alibi_bias(n_heads,
seq_len,
full=not causal,
alibi_bias_max=alibi_bias_max,
device=device,
dtype=dtype))
return attn_bias
else:
raise ValueError(f'{attn_impl=} is an invalid setting.')
def alibi_bias(n_heads,
seq_len,
full=False,
alibi_bias_max=8,
device=None,
dtype=None):
alibi_bias = torch.arange(1 - seq_len, 1, dtype=dtype,
device=device).view(1, 1, 1, seq_len)
if full:
# generate 1 x Heads x SeqLen x SeqLen alibi bias mask
# otherwise the mask is 1 x Heads x 1 x SeqLen (which is broadcast to the appropriate size)
alibi_bias = alibi_bias - torch.arange(
1 - seq_len, 1, dtype=dtype, device=device).view(1, 1, seq_len, 1)
alibi_bias = alibi_bias.abs().mul(-1)
m = torch.arange(1, n_heads + 1, dtype=dtype, device=device)
m = m.mul(alibi_bias_max / n_heads)
alibi_bias = alibi_bias * (1. / (2**m.view(1, n_heads, 1, 1)))
return alibi_bias