File size: 958 Bytes
33781aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("/content//TSLAM-4B", use_auth_token=None)
model = AutoModelForCausalLM.from_pretrained("/content//TSLAM-4B", use_auth_token=None)

# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Example text input
text_input = "How QOS is applied on routers?" 

p="""
<|system|>
You are a helpful assistant.<|end|>
<|user|>""" + text_input + """<|end|>
<|assistant|>
"""

# Tokenize and move input to device
inputs = tokenizer(p, return_tensors="pt")
inputs = inputs.to(device)

print("User Query: " + text_input)
# Generate text on the device
outputs = model.generate(**inputs, max_length=2000, num_return_sequences=1)

print("Model Response: ")
# Decode generated text
for output in outputs:
    generated_text = tokenizer.decode(output, skip_special_tokens=True)
    print(generated_text)