davidmezzetti
commited on
Commit
·
69392bf
1
Parent(s):
938b8a9
Initial version
Browse files- README.md +237 -0
- config.json +1 -0
- model.safetensors +3 -0
- tokenizer.json +0 -0
README.md
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
- transformers
|
8 |
+
- embeddings
|
9 |
+
- static-embeddings
|
10 |
+
language: en
|
11 |
+
license: apache-2.0
|
12 |
+
---
|
13 |
+
|
14 |
+
# PubMedBERT Embeddings 1M
|
15 |
+
|
16 |
+
This is a pruned version of [PubMedBERT Embeddings 2M](https://huggingface.co/NeuML/pubmedbert-base-embeddings-2M). It prunes the vocabulary to take the top 50% most frequently used tokens.
|
17 |
+
|
18 |
+
See [Extremely Small BERT Models from Mixed-Vocabulary Training](https://arxiv.org/abs/1909.11687) for background on pruning vocabularies to build smaller models.
|
19 |
+
|
20 |
+
## Usage (txtai)
|
21 |
+
|
22 |
+
This model can be used to build embeddings databases with [txtai](https://github.com/neuml/txtai) for semantic search and/or as a knowledge source for retrieval augmented generation (RAG).
|
23 |
+
|
24 |
+
```python
|
25 |
+
import txtai
|
26 |
+
|
27 |
+
# Create embeddings
|
28 |
+
embeddings = txtai.Embeddings(
|
29 |
+
path="neuml/pubmedbert-base-embeddings-1M",
|
30 |
+
content=True,
|
31 |
+
)
|
32 |
+
embeddings.index(documents())
|
33 |
+
|
34 |
+
# Run a query
|
35 |
+
embeddings.search("query to run")
|
36 |
+
```
|
37 |
+
|
38 |
+
## Usage (Sentence-Transformers)
|
39 |
+
|
40 |
+
Alternatively, the model can be loaded with [sentence-transformers](https://www.SBERT.net).
|
41 |
+
|
42 |
+
```python
|
43 |
+
from sentence_transformers import SentenceTransformer
|
44 |
+
from sentence_transformers.models import StaticEmbedding
|
45 |
+
|
46 |
+
# Initialize a StaticEmbedding module
|
47 |
+
static = StaticEmbedding.from_model2vec("neuml/pubmedbert-base-embeddings-1M")
|
48 |
+
model = SentenceTransformer(modules=[static])
|
49 |
+
|
50 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
51 |
+
embeddings = model.encode(sentences)
|
52 |
+
print(embeddings)
|
53 |
+
```
|
54 |
+
|
55 |
+
## Usage (Model2Vec)
|
56 |
+
|
57 |
+
The model can also be used directly with Model2Vec.
|
58 |
+
|
59 |
+
```python
|
60 |
+
from model2vec import StaticModel
|
61 |
+
|
62 |
+
# Load a pretrained Model2Vec model
|
63 |
+
model = StaticModel.from_pretrained("neuml/pubmedbert-base-embeddings-1M")
|
64 |
+
|
65 |
+
# Compute text embeddings
|
66 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
67 |
+
embeddings = model.encode(sentences)
|
68 |
+
print(embeddings)
|
69 |
+
```
|
70 |
+
|
71 |
+
## Evaluation Results
|
72 |
+
|
73 |
+
The following compares performance of this model against the models previously compared with [PubMedBERT Embeddings](https://huggingface.co/NeuML/pubmedbert-base-embeddings#evaluation-results). The following datasets were used to evaluate model performance.
|
74 |
+
|
75 |
+
- [PubMed QA](https://huggingface.co/datasets/pubmed_qa)
|
76 |
+
- Subset: pqa_labeled, Split: train, Pair: (question, long_answer)
|
77 |
+
- [PubMed Subset](https://huggingface.co/datasets/awinml/pubmed_abstract_3_1k)
|
78 |
+
- Split: test, Pair: (title, text)
|
79 |
+
- _Note: The previously used [PubMed Subset](https://huggingface.co/datasets/zxvix/pubmed_subset_new) dataset is no longer available but a similar dataset is used here_
|
80 |
+
- [PubMed Summary](https://huggingface.co/datasets/scientific_papers)
|
81 |
+
- Subset: pubmed, Split: validation, Pair: (article, abstract)
|
82 |
+
|
83 |
+
The [Pearson correlation coefficient](https://en.wikipedia.org/wiki/Pearson_correlation_coefficient) is used as the evaluation metric.
|
84 |
+
|
85 |
+
| Model | PubMed QA | PubMed Subset | PubMed Summary | Average |
|
86 |
+
| -------------------------------------------------------------------------------------- | --------- | ------------- | -------------- | --------- |
|
87 |
+
| pubmedbert-base-embeddings-8M-M2V (No training) | 69.84 | 70.77 | 71.30 | 70.64 |
|
88 |
+
| [pubmedbert-base-embeddings-100K](https://hf.co/neuml/pubmedbert-base-embeddings-100K) | 74.56 | 84.65 | 81.84 | 80.35 |
|
89 |
+
| [pubmedbert-base-embeddings-500K](https://hf.co/neuml/pubmedbert-base-embeddings-500K) | 86.03 | 91.71 | 91.25 | 89.66 |
|
90 |
+
| [**pubmedbert-base-embeddings-1M**](https://hf.co/neuml/pubmedbert-base-embeddings-1M) | **87.87** | **92.80** | **92.87** | **91.18** |
|
91 |
+
| [pubmedbert-base-embeddings-2M](https://hf.co/neuml/pubmedbert-base-embeddings-2M) | 88.62 | 93.08 | 93.24 | 91.65 |
|
92 |
+
|
93 |
+
As we can see, the accuracy tradeoff is relatively minimal compared to the original model.
|
94 |
+
|
95 |
+
## Runtime performance
|
96 |
+
|
97 |
+
As another test, let's see how long each model takes to index 120K article abstracts using the following code. All indexing is done with a RTX 3090 GPU.
|
98 |
+
|
99 |
+
```python
|
100 |
+
from datasets import load_dataset
|
101 |
+
from tqdm import tqdm
|
102 |
+
from txtai import Embeddings
|
103 |
+
|
104 |
+
ds = load_dataset("ccdv/pubmed-summarization", split="train")
|
105 |
+
|
106 |
+
embeddings = Embeddings(path="path to model", content=True, backend="numpy")
|
107 |
+
embeddings.index(tqdm(ds["abstract"]))
|
108 |
+
```
|
109 |
+
|
110 |
+
| Model | Model Size (MB) | Index time (s) |
|
111 |
+
| -------------------------------------------------------------------------------------- | ---------- | -------------- |
|
112 |
+
| [pubmedbert-base-embeddings-100K](https://hf.co/neuml/pubmedbert-base-embeddings-100K) | 0.2 | 19 |
|
113 |
+
| [pubmedbert-base-embeddings-500K](https://hf.co/neuml/pubmedbert-base-embeddings-500K) | 1.0 | 17 |
|
114 |
+
| **[pubmedbert-base-embeddings-1M](https://hf.co/neuml/pubmedbert-base-embeddings-1M)** | **2.0** | 17 |
|
115 |
+
| [pubmedbert-base-embeddings-2M](https://hf.co/neuml/pubmedbert-base-embeddings-2M) | 7.5 | 17 |
|
116 |
+
|
117 |
+
Vocabulary pruning doesn't change the runtime performance in this case. But the model is much smaller. Vectors are stored at `int16` precision. This can be beneficial to smaller/lower powered embedded devices and could lead to faster vectorization times.
|
118 |
+
|
119 |
+
## Training
|
120 |
+
|
121 |
+
This model was vocabulary pruned using the following script.
|
122 |
+
|
123 |
+
```python
|
124 |
+
import json
|
125 |
+
import os
|
126 |
+
|
127 |
+
from collections import Counter
|
128 |
+
from pathlib import Path
|
129 |
+
|
130 |
+
import numpy as np
|
131 |
+
|
132 |
+
from model2vec import StaticModel
|
133 |
+
from more_itertools import batched
|
134 |
+
from sklearn.decomposition import PCA
|
135 |
+
from tokenlearn.train import collect_means_and_texts
|
136 |
+
from tokenizers import Tokenizer
|
137 |
+
from tqdm import tqdm
|
138 |
+
from txtai.scoring import ScoringFactory
|
139 |
+
|
140 |
+
def tokenize(tokenizer):
|
141 |
+
# Tokenize into dataset
|
142 |
+
dataset = []
|
143 |
+
for t in tqdm(batched(texts, 1024)):
|
144 |
+
encodings = tokenizer.encode_batch_fast(t, add_special_tokens=False)
|
145 |
+
for e in encodings:
|
146 |
+
dataset.append((None, e.ids, None))
|
147 |
+
|
148 |
+
return dataset
|
149 |
+
|
150 |
+
def tokenweights(tokenizer):
|
151 |
+
dataset = tokenize(tokenizer)
|
152 |
+
|
153 |
+
# Build scoring index
|
154 |
+
scoring = ScoringFactory.create({"method": "bm25", "terms": True})
|
155 |
+
scoring.index(dataset)
|
156 |
+
|
157 |
+
# Calculate mean value of weights array per token
|
158 |
+
tokens = np.zeros(tokenizer.get_vocab_size())
|
159 |
+
for x in scoring.idf:
|
160 |
+
tokens[x] = np.mean(scoring.terms.weights(x)[1])
|
161 |
+
|
162 |
+
return tokens
|
163 |
+
|
164 |
+
# See PubMedBERT Embeddings 2M model for details on this data
|
165 |
+
features = "features"
|
166 |
+
paths = sorted(Path(features).glob("*.json"))
|
167 |
+
texts, _ = collect_means_and_texts(paths)
|
168 |
+
|
169 |
+
# Output model parameters
|
170 |
+
output = "output path"
|
171 |
+
params, dims = 1000000, 64
|
172 |
+
|
173 |
+
path = "pubmedbert-base-embeddings-2M_unweighted"
|
174 |
+
model = StaticModel.from_pretrained(path)
|
175 |
+
|
176 |
+
os.makedirs(output, exist_ok=True)
|
177 |
+
|
178 |
+
with open(f"{path}/tokenizer.json", "r", encoding="utf-8") as f:
|
179 |
+
config = json.load(f)
|
180 |
+
|
181 |
+
# Calculate number of tokens to keep
|
182 |
+
tokencount = params // model.dim
|
183 |
+
|
184 |
+
# Calculate term frequency
|
185 |
+
freqs = Counter()
|
186 |
+
for _, ids, _ in tokenize(model.tokenizer):
|
187 |
+
freqs.update(ids)
|
188 |
+
|
189 |
+
# Select top N most common tokens
|
190 |
+
uids = set(x for x, _ in freqs.most_common(tokencount))
|
191 |
+
uids = [uid for token, uid in config["model"]["vocab"].items() if uid in uids or token.startswith("[")]
|
192 |
+
|
193 |
+
# Get embeddings for uids
|
194 |
+
model.embedding = model.embedding[uids]
|
195 |
+
|
196 |
+
# Select pruned tokens
|
197 |
+
pairs, index = [], 0
|
198 |
+
for token, uid in config["model"]["vocab"].items():
|
199 |
+
if uid in uids:
|
200 |
+
pairs.append((token, index))
|
201 |
+
index += 1
|
202 |
+
|
203 |
+
config["model"]["vocab"] = dict(pairs)
|
204 |
+
|
205 |
+
# Write new tokenizer
|
206 |
+
with open(f"{output}/tokenizer.json", "w", encoding="utf-8") as f:
|
207 |
+
json.dump(config, f, indent=2)
|
208 |
+
|
209 |
+
model.tokenizer = Tokenizer.from_file(f"{output}/tokenizer.json")
|
210 |
+
|
211 |
+
# Re-weight tokens
|
212 |
+
weights = tokenweights(model.tokenizer)
|
213 |
+
|
214 |
+
# Remove NaNs from embedding, if any
|
215 |
+
embedding = np.nan_to_num(model.embedding)
|
216 |
+
|
217 |
+
# Apply PCA
|
218 |
+
embedding = PCA(n_components=dims).fit_transform(embedding)
|
219 |
+
|
220 |
+
# Apply weights
|
221 |
+
embedding *= weights[:, None]
|
222 |
+
|
223 |
+
# Update model embedding and normalize
|
224 |
+
model.embedding, model.normalize = embedding.astype(np.int16), True
|
225 |
+
|
226 |
+
model.save_pretrained(output)
|
227 |
+
```
|
228 |
+
|
229 |
+
## Acknowledgement
|
230 |
+
|
231 |
+
This model is built on the great work from the [Minish Lab](https://github.com/MinishLab) team consisting of [Stephan Tulkens](https://github.com/stephantul) and [Thomas van Dongen](https://github.com/Pringled).
|
232 |
+
|
233 |
+
Read more at the following links.
|
234 |
+
|
235 |
+
- [Model2Vec](https://github.com/MinishLab/model2vec)
|
236 |
+
- [Tokenlearn](https://github.com/MinishLab/tokenlearn)
|
237 |
+
- [Minish Lab Blog](https://minishlab.github.io/)
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"model_type": "model2vec", "architectures": ["StaticModel"], "tokenizer_name": "neuml/pubmedbert-base-embeddings", "apply_pca": 64, "apply_zipf": true, "hidden_dim": 64, "seq_length": 1000000, "normalize": true}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c24936ae1ff2217a8ec58846ed8e086001091359e253d8f260f43584cf4e54bc
|
3 |
+
size 2000472
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|