mgladden commited on
Commit
e59fb57
1 Parent(s): 4d3b969

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +35 -24
README.md CHANGED
@@ -1,48 +1,59 @@
1
  ---
2
  license: mit
3
  tags:
4
- - generated_from_keras_callback
 
5
  model-index:
6
- - name: ManaGPT-1020
7
  results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  ---
9
 
10
- <!-- This model card has been generated automatically according to the information Keras had access to. You should
11
- probably proofread and complete it, then remove this comment. -->
12
-
13
  # ManaGPT-1020
 
 
14
 
15
- This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset.
16
- It achieves the following results on the evaluation set:
17
-
18
 
19
  ## Model description
20
 
21
- More information needed
22
 
23
  ## Intended uses & limitations
24
 
25
- More information needed
26
-
27
- ## Training and evaluation data
28
-
29
- More information needed
30
 
31
- ## Training procedure
32
 
33
- ### Training hyperparameters
34
-
35
- The following hyperparameters were used during training:
36
  - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'ExponentialDecay', 'config': {'initial_learning_rate': 0.0005, 'decay_steps': 500, 'decay_rate': 0.95, 'staircase': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
37
  - training_precision: float32
38
 
39
- ### Training results
40
-
41
-
42
-
43
  ### Framework versions
44
 
45
- - Transformers 4.27.2
46
  - TensorFlow 2.11.0
47
  - Datasets 2.10.1
48
- - Tokenizers 0.13.2
 
1
  ---
2
  license: mit
3
  tags:
4
+ - management
5
+ - text generation
6
  model-index:
7
+ - name: ManaGPT-1010
8
  results: []
9
+ language:
10
+ - en
11
+ pipeline_tag: text-generation
12
+
13
+ widget:
14
+ - text: "Within a cyber-physical system, social robots should be expected to "
15
+ example_title: "Social robots"
16
+ - text: "Neuroprosthetic implants in the workplace"
17
+ example_title: "Neuroprosthetic implants"
18
+ - text: "It will be difficult for robotic employees to"
19
+ example_title: "Robotic employees' difficulties"
20
+ - text: "Artificial agents for business"
21
+ example_title: "Artificial agents for business"
22
+ - text: "The strategic use of robots"
23
+ example_title: "The strategic use of robots"
24
+ - text: "Information security within future organizations will be difficult to enforce, because"
25
+ example_title: "InfoSec challenges"
26
+ - text: "Artificial intelligence within businesses"
27
+ example_title: "AI within businesses"
28
+ - text: "Tomorrow's robots will"
29
+ example_title: ""
30
+ - text: "For most organizations, artificial general intelligence will"
31
+ example_title: "AGI for organizations"
32
  ---
33
 
 
 
 
34
  # ManaGPT-1020
35
+ <img style="float:right; margin:10px; margin-right:30px" src="https://huggingface.co/NeuraXenetica/ManaGPT-1010/resolve/main/ManaGPT_logo_01.png" width="150" height="150"></img>
36
+ **ManaGPT-1020** is an experimental open-source text-generating AI designed to offer insights on the role of emerging technologies in organizational management.
37
 
38
+ _(Please note that ManaGPT-1020 has superseded **[ManaGPT-1010](https://huggingface.co/NeuraXenetica/ManaGPT-1010)**: the newer model has been fine-tuned on a dataset roughly 6.45 times the size of that used to fine-tune ManaGPT-1010.)_
 
 
39
 
40
  ## Model description
41
 
42
+ The model is a fine-tuned version of GPT-2 that has been trained on a custom corpus of scholarly and popular texts from the field of organizational management that relate to ongoing effects of posthumanizing technologies (e.g., relating to advanced artificial intelligence, social robotics, virtual reality, neuroprosthetics, and cyber-physical systems) on the structure of organizations and human beings’ experience of organizational life.
43
 
44
  ## Intended uses & limitations
45
 
46
+ This model has been designed for experimental research purposes; it isn’t intended for use in a production setting or in any sensitive or potentially hazardous contexts.
 
 
 
 
47
 
48
+ ## Training procedure and hyperparameters
49
 
50
+ The model was trained using a Tesla T4 with 16GB of GPU memory. The following hyperparameters were used during training:
 
 
51
  - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'ExponentialDecay', 'config': {'initial_learning_rate': 0.0005, 'decay_steps': 500, 'decay_rate': 0.95, 'staircase': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
52
  - training_precision: float32
53
 
 
 
 
 
54
  ### Framework versions
55
 
56
+ - Transformers 4.27.1
57
  - TensorFlow 2.11.0
58
  - Datasets 2.10.1
59
+ - Tokenizers 0.13.2