--- license: mit base_model: Clinical-AI-Apollo/Medical-NER tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: Medical-NER-finetuned-ner results: [] --- # Medical-NER-finetuned-ner This model is a fine-tuned version of [Clinical-AI-Apollo/Medical-NER](https://huggingface.co/Clinical-AI-Apollo/Medical-NER) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0603 - Precision: 0.8160 - Recall: 0.8837 - F1: 0.8485 - Accuracy: 0.9837 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 340 | 0.0609 | 0.8136 | 0.8503 | 0.8316 | 0.9825 | | 0.1068 | 2.0 | 680 | 0.0520 | 0.8096 | 0.8819 | 0.8442 | 0.9835 | | 0.0335 | 3.0 | 1020 | 0.0603 | 0.8160 | 0.8837 | 0.8485 | 0.9837 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.2