Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- added_tokens.json +28 -0
- config.json +28 -0
- generation_config.json +7 -0
- latest +1 -0
- merges.txt +0 -0
- model-00001-of-00014.safetensors +3 -0
- model-00002-of-00014.safetensors +3 -0
- model-00003-of-00014.safetensors +3 -0
- model-00004-of-00014.safetensors +3 -0
- model-00005-of-00014.safetensors +3 -0
- model-00006-of-00014.safetensors +3 -0
- model-00007-of-00014.safetensors +3 -0
- model-00008-of-00014.safetensors +3 -0
- model-00009-of-00014.safetensors +3 -0
- model-00010-of-00014.safetensors +3 -0
- model-00011-of-00014.safetensors +3 -0
- model-00012-of-00014.safetensors +3 -0
- model-00013-of-00014.safetensors +3 -0
- model-00014-of-00014.safetensors +3 -0
- model.safetensors.index.json +778 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- rng_state_4.pth +3 -0
- rng_state_5.pth +3 -0
- rng_state_6.pth +3 -0
- rng_state_7.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +240 -0
- trainer_state.json +2693 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +760 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</think>": 151668,
|
3 |
+
"</tool_call>": 151658,
|
4 |
+
"</tool_response>": 151666,
|
5 |
+
"<think>": 151667,
|
6 |
+
"<tool_call>": 151657,
|
7 |
+
"<tool_response>": 151665,
|
8 |
+
"<|box_end|>": 151649,
|
9 |
+
"<|box_start|>": 151648,
|
10 |
+
"<|endoftext|>": 151643,
|
11 |
+
"<|file_sep|>": 151664,
|
12 |
+
"<|fim_middle|>": 151660,
|
13 |
+
"<|fim_pad|>": 151662,
|
14 |
+
"<|fim_prefix|>": 151659,
|
15 |
+
"<|fim_suffix|>": 151661,
|
16 |
+
"<|im_end|>": 151645,
|
17 |
+
"<|im_start|>": 151644,
|
18 |
+
"<|image_pad|>": 151655,
|
19 |
+
"<|object_ref_end|>": 151647,
|
20 |
+
"<|object_ref_start|>": 151646,
|
21 |
+
"<|quad_end|>": 151651,
|
22 |
+
"<|quad_start|>": 151650,
|
23 |
+
"<|repo_name|>": 151663,
|
24 |
+
"<|video_pad|>": 151656,
|
25 |
+
"<|vision_end|>": 151653,
|
26 |
+
"<|vision_pad|>": 151654,
|
27 |
+
"<|vision_start|>": 151652
|
28 |
+
}
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./qwq",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"eos_token_id": 151645,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 5120,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 27648,
|
12 |
+
"max_position_embeddings": 131072,
|
13 |
+
"max_window_layers": 64,
|
14 |
+
"model_type": "qwen2",
|
15 |
+
"num_attention_heads": 40,
|
16 |
+
"num_hidden_layers": 64,
|
17 |
+
"num_key_value_heads": 8,
|
18 |
+
"rms_norm_eps": 1e-05,
|
19 |
+
"rope_scaling": null,
|
20 |
+
"rope_theta": 1000000.0,
|
21 |
+
"sliding_window": 32768,
|
22 |
+
"tie_word_embeddings": false,
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"transformers_version": "4.49.0",
|
25 |
+
"use_cache": false,
|
26 |
+
"use_sliding_window": false,
|
27 |
+
"vocab_size": 152064
|
28 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 151643,
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": 151645,
|
6 |
+
"transformers_version": "4.49.0"
|
7 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step379
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c4486be345bf9812138d2e70a5438f3d77a3277f50e292a592db44530eb5ed09
|
3 |
+
size 4891730992
|
model-00002-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c0b7094520949e5db84534b10d4bfc2c2f50d6e8dd40841b0c13ff314225a5c
|
3 |
+
size 4876059352
|
model-00003-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f5c6188f06710445c82cf9fcb662dc5a4b107ddc1fa27f446f7d5f89417dce64
|
3 |
+
size 4876059384
|
model-00004-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:781650d4985de841b70e4a0a344777f9a0beb18b22610aa6860ef56f748e9ae9
|
3 |
+
size 4876059416
|
model-00005-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:219b1301d713217fe00d1d710d390a8fc0187a262c89dff248f8398433b2f1aa
|
3 |
+
size 4876059416
|
model-00006-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce082af15ff53ea31f34ee410143b65e819e32580436ce8267bce60542b3fa84
|
3 |
+
size 4876059416
|
model-00007-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ad6e09861e664b1f2fa0c39af92f1842bf2435944b1d8547585d77e5ad27d20
|
3 |
+
size 4876059416
|
model-00008-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a0480652b2bb01a90484b4c383c670ec7e081019a4fdace451e34a3497e96ad7
|
3 |
+
size 4876059416
|
model-00009-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:529b82f39a5064cb4598bc71a7e00e3f1ac9911877034928c1f5a42c7a611814
|
3 |
+
size 4876059416
|
model-00010-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da1e7c99bf03fbcb701a422bd51a6c5b6ec99e3f71e3922b415c9afdcc61f412
|
3 |
+
size 4876059416
|
model-00011-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c03b8133dd219e4bbc5052ad02f75245d56d0a07d8cc3e70f590d81878f0e35
|
3 |
+
size 4876059416
|
model-00012-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a8235fe12460e0611e8836f39c345deb90025a87b544c4619a2275aa531f8fe
|
3 |
+
size 4876059416
|
model-00013-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16563b864450652c25cdb771aeaa0b212b7960b88b5bba64eb91681aa06cbdc1
|
3 |
+
size 4876059416
|
model-00014-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4556c6da97da959950d67b8e281f405d20ab01ad7c585ace0013b39b89e45ce2
|
3 |
+
size 2123397800
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,778 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 65527752704
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00014-of-00014.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00014.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00014.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00014.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00014.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00014.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00014.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00014.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00003-of-00014.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00003-of-00014.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00003-of-00014.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00004-of-00014.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00004-of-00014.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00004-of-00014.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00004-of-00014.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00004-of-00014.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00004-of-00014.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00004-of-00014.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00004-of-00014.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00005-of-00014.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00004-of-00014.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00004-of-00014.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00004-of-00014.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00004-of-00014.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00004-of-00014.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00004-of-00014.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00004-of-00014.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00004-of-00014.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00005-of-00014.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00014.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00014.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00014.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00014.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00014.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00005-of-00014.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00005-of-00014.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00005-of-00014.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00005-of-00014.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00005-of-00014.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00005-of-00014.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00006-of-00014.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00005-of-00014.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00005-of-00014.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00005-of-00014.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00005-of-00014.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00005-of-00014.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00005-of-00014.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00005-of-00014.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00005-of-00014.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00006-of-00014.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00006-of-00014.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00006-of-00014.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00006-of-00014.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00006-of-00014.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00006-of-00014.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00006-of-00014.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
|
260 |
+
"model.layers.28.input_layernorm.weight": "model-00007-of-00014.safetensors",
|
261 |
+
"model.layers.28.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
|
262 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00006-of-00014.safetensors",
|
263 |
+
"model.layers.28.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
|
264 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
|
265 |
+
"model.layers.28.self_attn.k_proj.bias": "model-00006-of-00014.safetensors",
|
266 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00006-of-00014.safetensors",
|
267 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00006-of-00014.safetensors",
|
268 |
+
"model.layers.28.self_attn.q_proj.bias": "model-00006-of-00014.safetensors",
|
269 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00006-of-00014.safetensors",
|
270 |
+
"model.layers.28.self_attn.v_proj.bias": "model-00006-of-00014.safetensors",
|
271 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00006-of-00014.safetensors",
|
272 |
+
"model.layers.29.input_layernorm.weight": "model-00007-of-00014.safetensors",
|
273 |
+
"model.layers.29.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
|
274 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
|
275 |
+
"model.layers.29.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
|
276 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
|
277 |
+
"model.layers.29.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
|
278 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
|
279 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
|
280 |
+
"model.layers.29.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
|
281 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
|
282 |
+
"model.layers.29.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
|
283 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
|
284 |
+
"model.layers.3.input_layernorm.weight": "model-00002-of-00014.safetensors",
|
285 |
+
"model.layers.3.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
|
286 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00014.safetensors",
|
287 |
+
"model.layers.3.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
|
288 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
|
289 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00014.safetensors",
|
290 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00014.safetensors",
|
291 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00014.safetensors",
|
292 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00014.safetensors",
|
293 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00014.safetensors",
|
294 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00014.safetensors",
|
295 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00014.safetensors",
|
296 |
+
"model.layers.30.input_layernorm.weight": "model-00007-of-00014.safetensors",
|
297 |
+
"model.layers.30.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
|
298 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
|
299 |
+
"model.layers.30.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
|
300 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
|
301 |
+
"model.layers.30.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
|
302 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
|
303 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
|
304 |
+
"model.layers.30.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
|
305 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
|
306 |
+
"model.layers.30.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
|
307 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
|
308 |
+
"model.layers.31.input_layernorm.weight": "model-00007-of-00014.safetensors",
|
309 |
+
"model.layers.31.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
|
310 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
|
311 |
+
"model.layers.31.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
|
312 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
|
313 |
+
"model.layers.31.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
|
314 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
|
315 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
|
316 |
+
"model.layers.31.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
|
317 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
|
318 |
+
"model.layers.31.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
|
319 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
|
320 |
+
"model.layers.32.input_layernorm.weight": "model-00007-of-00014.safetensors",
|
321 |
+
"model.layers.32.mlp.down_proj.weight": "model-00007-of-00014.safetensors",
|
322 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
|
323 |
+
"model.layers.32.mlp.up_proj.weight": "model-00007-of-00014.safetensors",
|
324 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00007-of-00014.safetensors",
|
325 |
+
"model.layers.32.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
|
326 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
|
327 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
|
328 |
+
"model.layers.32.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
|
329 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
|
330 |
+
"model.layers.32.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
|
331 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
|
332 |
+
"model.layers.33.input_layernorm.weight": "model-00008-of-00014.safetensors",
|
333 |
+
"model.layers.33.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
|
334 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00007-of-00014.safetensors",
|
335 |
+
"model.layers.33.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
|
336 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
|
337 |
+
"model.layers.33.self_attn.k_proj.bias": "model-00007-of-00014.safetensors",
|
338 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00007-of-00014.safetensors",
|
339 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00007-of-00014.safetensors",
|
340 |
+
"model.layers.33.self_attn.q_proj.bias": "model-00007-of-00014.safetensors",
|
341 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00007-of-00014.safetensors",
|
342 |
+
"model.layers.33.self_attn.v_proj.bias": "model-00007-of-00014.safetensors",
|
343 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00007-of-00014.safetensors",
|
344 |
+
"model.layers.34.input_layernorm.weight": "model-00008-of-00014.safetensors",
|
345 |
+
"model.layers.34.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
|
346 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
|
347 |
+
"model.layers.34.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
|
348 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
|
349 |
+
"model.layers.34.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
|
350 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
|
351 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
|
352 |
+
"model.layers.34.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
|
353 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
|
354 |
+
"model.layers.34.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
|
355 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
|
356 |
+
"model.layers.35.input_layernorm.weight": "model-00008-of-00014.safetensors",
|
357 |
+
"model.layers.35.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
|
358 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
|
359 |
+
"model.layers.35.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
|
360 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
|
361 |
+
"model.layers.35.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
|
362 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
|
363 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
|
364 |
+
"model.layers.35.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
|
365 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
|
366 |
+
"model.layers.35.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
|
367 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
|
368 |
+
"model.layers.36.input_layernorm.weight": "model-00008-of-00014.safetensors",
|
369 |
+
"model.layers.36.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
|
370 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
|
371 |
+
"model.layers.36.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
|
372 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
|
373 |
+
"model.layers.36.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
|
374 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
|
375 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
|
376 |
+
"model.layers.36.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
|
377 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
|
378 |
+
"model.layers.36.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
|
379 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
|
380 |
+
"model.layers.37.input_layernorm.weight": "model-00008-of-00014.safetensors",
|
381 |
+
"model.layers.37.mlp.down_proj.weight": "model-00008-of-00014.safetensors",
|
382 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
|
383 |
+
"model.layers.37.mlp.up_proj.weight": "model-00008-of-00014.safetensors",
|
384 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00008-of-00014.safetensors",
|
385 |
+
"model.layers.37.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
|
386 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
|
387 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
|
388 |
+
"model.layers.37.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
|
389 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
|
390 |
+
"model.layers.37.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
|
391 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
|
392 |
+
"model.layers.38.input_layernorm.weight": "model-00009-of-00014.safetensors",
|
393 |
+
"model.layers.38.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
|
394 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00008-of-00014.safetensors",
|
395 |
+
"model.layers.38.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
|
396 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
|
397 |
+
"model.layers.38.self_attn.k_proj.bias": "model-00008-of-00014.safetensors",
|
398 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00008-of-00014.safetensors",
|
399 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00008-of-00014.safetensors",
|
400 |
+
"model.layers.38.self_attn.q_proj.bias": "model-00008-of-00014.safetensors",
|
401 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00008-of-00014.safetensors",
|
402 |
+
"model.layers.38.self_attn.v_proj.bias": "model-00008-of-00014.safetensors",
|
403 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00008-of-00014.safetensors",
|
404 |
+
"model.layers.39.input_layernorm.weight": "model-00009-of-00014.safetensors",
|
405 |
+
"model.layers.39.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
|
406 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
|
407 |
+
"model.layers.39.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
|
408 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
|
409 |
+
"model.layers.39.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
|
410 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
|
411 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
|
412 |
+
"model.layers.39.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
|
413 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
|
414 |
+
"model.layers.39.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
|
415 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
|
416 |
+
"model.layers.4.input_layernorm.weight": "model-00002-of-00014.safetensors",
|
417 |
+
"model.layers.4.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
|
418 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
|
419 |
+
"model.layers.4.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
|
420 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
|
421 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
|
422 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
|
423 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
|
424 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
|
425 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
|
426 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
|
427 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
|
428 |
+
"model.layers.40.input_layernorm.weight": "model-00009-of-00014.safetensors",
|
429 |
+
"model.layers.40.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
|
430 |
+
"model.layers.40.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
|
431 |
+
"model.layers.40.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
|
432 |
+
"model.layers.40.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
|
433 |
+
"model.layers.40.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
|
434 |
+
"model.layers.40.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
|
435 |
+
"model.layers.40.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
|
436 |
+
"model.layers.40.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
|
437 |
+
"model.layers.40.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
|
438 |
+
"model.layers.40.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
|
439 |
+
"model.layers.40.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
|
440 |
+
"model.layers.41.input_layernorm.weight": "model-00009-of-00014.safetensors",
|
441 |
+
"model.layers.41.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
|
442 |
+
"model.layers.41.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
|
443 |
+
"model.layers.41.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
|
444 |
+
"model.layers.41.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
|
445 |
+
"model.layers.41.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
|
446 |
+
"model.layers.41.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
|
447 |
+
"model.layers.41.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
|
448 |
+
"model.layers.41.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
|
449 |
+
"model.layers.41.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
|
450 |
+
"model.layers.41.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
|
451 |
+
"model.layers.41.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
|
452 |
+
"model.layers.42.input_layernorm.weight": "model-00009-of-00014.safetensors",
|
453 |
+
"model.layers.42.mlp.down_proj.weight": "model-00009-of-00014.safetensors",
|
454 |
+
"model.layers.42.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
|
455 |
+
"model.layers.42.mlp.up_proj.weight": "model-00009-of-00014.safetensors",
|
456 |
+
"model.layers.42.post_attention_layernorm.weight": "model-00009-of-00014.safetensors",
|
457 |
+
"model.layers.42.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
|
458 |
+
"model.layers.42.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
|
459 |
+
"model.layers.42.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
|
460 |
+
"model.layers.42.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
|
461 |
+
"model.layers.42.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
|
462 |
+
"model.layers.42.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
|
463 |
+
"model.layers.42.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
|
464 |
+
"model.layers.43.input_layernorm.weight": "model-00010-of-00014.safetensors",
|
465 |
+
"model.layers.43.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
|
466 |
+
"model.layers.43.mlp.gate_proj.weight": "model-00009-of-00014.safetensors",
|
467 |
+
"model.layers.43.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
|
468 |
+
"model.layers.43.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
|
469 |
+
"model.layers.43.self_attn.k_proj.bias": "model-00009-of-00014.safetensors",
|
470 |
+
"model.layers.43.self_attn.k_proj.weight": "model-00009-of-00014.safetensors",
|
471 |
+
"model.layers.43.self_attn.o_proj.weight": "model-00009-of-00014.safetensors",
|
472 |
+
"model.layers.43.self_attn.q_proj.bias": "model-00009-of-00014.safetensors",
|
473 |
+
"model.layers.43.self_attn.q_proj.weight": "model-00009-of-00014.safetensors",
|
474 |
+
"model.layers.43.self_attn.v_proj.bias": "model-00009-of-00014.safetensors",
|
475 |
+
"model.layers.43.self_attn.v_proj.weight": "model-00009-of-00014.safetensors",
|
476 |
+
"model.layers.44.input_layernorm.weight": "model-00010-of-00014.safetensors",
|
477 |
+
"model.layers.44.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
|
478 |
+
"model.layers.44.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
|
479 |
+
"model.layers.44.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
|
480 |
+
"model.layers.44.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
|
481 |
+
"model.layers.44.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
|
482 |
+
"model.layers.44.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
|
483 |
+
"model.layers.44.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
|
484 |
+
"model.layers.44.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
|
485 |
+
"model.layers.44.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
|
486 |
+
"model.layers.44.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
|
487 |
+
"model.layers.44.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
|
488 |
+
"model.layers.45.input_layernorm.weight": "model-00010-of-00014.safetensors",
|
489 |
+
"model.layers.45.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
|
490 |
+
"model.layers.45.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
|
491 |
+
"model.layers.45.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
|
492 |
+
"model.layers.45.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
|
493 |
+
"model.layers.45.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
|
494 |
+
"model.layers.45.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
|
495 |
+
"model.layers.45.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
|
496 |
+
"model.layers.45.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
|
497 |
+
"model.layers.45.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
|
498 |
+
"model.layers.45.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
|
499 |
+
"model.layers.45.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
|
500 |
+
"model.layers.46.input_layernorm.weight": "model-00010-of-00014.safetensors",
|
501 |
+
"model.layers.46.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
|
502 |
+
"model.layers.46.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
|
503 |
+
"model.layers.46.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
|
504 |
+
"model.layers.46.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
|
505 |
+
"model.layers.46.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
|
506 |
+
"model.layers.46.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
|
507 |
+
"model.layers.46.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
|
508 |
+
"model.layers.46.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
|
509 |
+
"model.layers.46.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
|
510 |
+
"model.layers.46.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
|
511 |
+
"model.layers.46.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
|
512 |
+
"model.layers.47.input_layernorm.weight": "model-00010-of-00014.safetensors",
|
513 |
+
"model.layers.47.mlp.down_proj.weight": "model-00010-of-00014.safetensors",
|
514 |
+
"model.layers.47.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
|
515 |
+
"model.layers.47.mlp.up_proj.weight": "model-00010-of-00014.safetensors",
|
516 |
+
"model.layers.47.post_attention_layernorm.weight": "model-00010-of-00014.safetensors",
|
517 |
+
"model.layers.47.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
|
518 |
+
"model.layers.47.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
|
519 |
+
"model.layers.47.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
|
520 |
+
"model.layers.47.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
|
521 |
+
"model.layers.47.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
|
522 |
+
"model.layers.47.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
|
523 |
+
"model.layers.47.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
|
524 |
+
"model.layers.48.input_layernorm.weight": "model-00011-of-00014.safetensors",
|
525 |
+
"model.layers.48.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
|
526 |
+
"model.layers.48.mlp.gate_proj.weight": "model-00010-of-00014.safetensors",
|
527 |
+
"model.layers.48.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
|
528 |
+
"model.layers.48.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
|
529 |
+
"model.layers.48.self_attn.k_proj.bias": "model-00010-of-00014.safetensors",
|
530 |
+
"model.layers.48.self_attn.k_proj.weight": "model-00010-of-00014.safetensors",
|
531 |
+
"model.layers.48.self_attn.o_proj.weight": "model-00010-of-00014.safetensors",
|
532 |
+
"model.layers.48.self_attn.q_proj.bias": "model-00010-of-00014.safetensors",
|
533 |
+
"model.layers.48.self_attn.q_proj.weight": "model-00010-of-00014.safetensors",
|
534 |
+
"model.layers.48.self_attn.v_proj.bias": "model-00010-of-00014.safetensors",
|
535 |
+
"model.layers.48.self_attn.v_proj.weight": "model-00010-of-00014.safetensors",
|
536 |
+
"model.layers.49.input_layernorm.weight": "model-00011-of-00014.safetensors",
|
537 |
+
"model.layers.49.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
|
538 |
+
"model.layers.49.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
|
539 |
+
"model.layers.49.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
|
540 |
+
"model.layers.49.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
|
541 |
+
"model.layers.49.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
|
542 |
+
"model.layers.49.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
|
543 |
+
"model.layers.49.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
|
544 |
+
"model.layers.49.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
|
545 |
+
"model.layers.49.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
|
546 |
+
"model.layers.49.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
|
547 |
+
"model.layers.49.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
|
548 |
+
"model.layers.5.input_layernorm.weight": "model-00002-of-00014.safetensors",
|
549 |
+
"model.layers.5.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
|
550 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
|
551 |
+
"model.layers.5.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
|
552 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
|
553 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
|
554 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
|
555 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
|
556 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
|
557 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
|
558 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
|
559 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
|
560 |
+
"model.layers.50.input_layernorm.weight": "model-00011-of-00014.safetensors",
|
561 |
+
"model.layers.50.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
|
562 |
+
"model.layers.50.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
|
563 |
+
"model.layers.50.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
|
564 |
+
"model.layers.50.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
|
565 |
+
"model.layers.50.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
|
566 |
+
"model.layers.50.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
|
567 |
+
"model.layers.50.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
|
568 |
+
"model.layers.50.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
|
569 |
+
"model.layers.50.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
|
570 |
+
"model.layers.50.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
|
571 |
+
"model.layers.50.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
|
572 |
+
"model.layers.51.input_layernorm.weight": "model-00011-of-00014.safetensors",
|
573 |
+
"model.layers.51.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
|
574 |
+
"model.layers.51.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
|
575 |
+
"model.layers.51.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
|
576 |
+
"model.layers.51.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
|
577 |
+
"model.layers.51.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
|
578 |
+
"model.layers.51.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
|
579 |
+
"model.layers.51.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
|
580 |
+
"model.layers.51.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
|
581 |
+
"model.layers.51.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
|
582 |
+
"model.layers.51.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
|
583 |
+
"model.layers.51.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
|
584 |
+
"model.layers.52.input_layernorm.weight": "model-00011-of-00014.safetensors",
|
585 |
+
"model.layers.52.mlp.down_proj.weight": "model-00011-of-00014.safetensors",
|
586 |
+
"model.layers.52.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
|
587 |
+
"model.layers.52.mlp.up_proj.weight": "model-00011-of-00014.safetensors",
|
588 |
+
"model.layers.52.post_attention_layernorm.weight": "model-00011-of-00014.safetensors",
|
589 |
+
"model.layers.52.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
|
590 |
+
"model.layers.52.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
|
591 |
+
"model.layers.52.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
|
592 |
+
"model.layers.52.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
|
593 |
+
"model.layers.52.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
|
594 |
+
"model.layers.52.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
|
595 |
+
"model.layers.52.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
|
596 |
+
"model.layers.53.input_layernorm.weight": "model-00012-of-00014.safetensors",
|
597 |
+
"model.layers.53.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
|
598 |
+
"model.layers.53.mlp.gate_proj.weight": "model-00011-of-00014.safetensors",
|
599 |
+
"model.layers.53.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
|
600 |
+
"model.layers.53.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
|
601 |
+
"model.layers.53.self_attn.k_proj.bias": "model-00011-of-00014.safetensors",
|
602 |
+
"model.layers.53.self_attn.k_proj.weight": "model-00011-of-00014.safetensors",
|
603 |
+
"model.layers.53.self_attn.o_proj.weight": "model-00011-of-00014.safetensors",
|
604 |
+
"model.layers.53.self_attn.q_proj.bias": "model-00011-of-00014.safetensors",
|
605 |
+
"model.layers.53.self_attn.q_proj.weight": "model-00011-of-00014.safetensors",
|
606 |
+
"model.layers.53.self_attn.v_proj.bias": "model-00011-of-00014.safetensors",
|
607 |
+
"model.layers.53.self_attn.v_proj.weight": "model-00011-of-00014.safetensors",
|
608 |
+
"model.layers.54.input_layernorm.weight": "model-00012-of-00014.safetensors",
|
609 |
+
"model.layers.54.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
|
610 |
+
"model.layers.54.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
|
611 |
+
"model.layers.54.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
|
612 |
+
"model.layers.54.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
|
613 |
+
"model.layers.54.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
|
614 |
+
"model.layers.54.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
|
615 |
+
"model.layers.54.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
|
616 |
+
"model.layers.54.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
|
617 |
+
"model.layers.54.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
|
618 |
+
"model.layers.54.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
|
619 |
+
"model.layers.54.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
|
620 |
+
"model.layers.55.input_layernorm.weight": "model-00012-of-00014.safetensors",
|
621 |
+
"model.layers.55.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
|
622 |
+
"model.layers.55.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
|
623 |
+
"model.layers.55.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
|
624 |
+
"model.layers.55.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
|
625 |
+
"model.layers.55.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
|
626 |
+
"model.layers.55.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
|
627 |
+
"model.layers.55.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
|
628 |
+
"model.layers.55.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
|
629 |
+
"model.layers.55.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
|
630 |
+
"model.layers.55.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
|
631 |
+
"model.layers.55.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
|
632 |
+
"model.layers.56.input_layernorm.weight": "model-00012-of-00014.safetensors",
|
633 |
+
"model.layers.56.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
|
634 |
+
"model.layers.56.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
|
635 |
+
"model.layers.56.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
|
636 |
+
"model.layers.56.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
|
637 |
+
"model.layers.56.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
|
638 |
+
"model.layers.56.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
|
639 |
+
"model.layers.56.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
|
640 |
+
"model.layers.56.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
|
641 |
+
"model.layers.56.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
|
642 |
+
"model.layers.56.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
|
643 |
+
"model.layers.56.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
|
644 |
+
"model.layers.57.input_layernorm.weight": "model-00012-of-00014.safetensors",
|
645 |
+
"model.layers.57.mlp.down_proj.weight": "model-00012-of-00014.safetensors",
|
646 |
+
"model.layers.57.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
|
647 |
+
"model.layers.57.mlp.up_proj.weight": "model-00012-of-00014.safetensors",
|
648 |
+
"model.layers.57.post_attention_layernorm.weight": "model-00012-of-00014.safetensors",
|
649 |
+
"model.layers.57.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
|
650 |
+
"model.layers.57.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
|
651 |
+
"model.layers.57.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
|
652 |
+
"model.layers.57.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
|
653 |
+
"model.layers.57.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
|
654 |
+
"model.layers.57.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
|
655 |
+
"model.layers.57.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
|
656 |
+
"model.layers.58.input_layernorm.weight": "model-00013-of-00014.safetensors",
|
657 |
+
"model.layers.58.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
|
658 |
+
"model.layers.58.mlp.gate_proj.weight": "model-00012-of-00014.safetensors",
|
659 |
+
"model.layers.58.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
|
660 |
+
"model.layers.58.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
|
661 |
+
"model.layers.58.self_attn.k_proj.bias": "model-00012-of-00014.safetensors",
|
662 |
+
"model.layers.58.self_attn.k_proj.weight": "model-00012-of-00014.safetensors",
|
663 |
+
"model.layers.58.self_attn.o_proj.weight": "model-00012-of-00014.safetensors",
|
664 |
+
"model.layers.58.self_attn.q_proj.bias": "model-00012-of-00014.safetensors",
|
665 |
+
"model.layers.58.self_attn.q_proj.weight": "model-00012-of-00014.safetensors",
|
666 |
+
"model.layers.58.self_attn.v_proj.bias": "model-00012-of-00014.safetensors",
|
667 |
+
"model.layers.58.self_attn.v_proj.weight": "model-00012-of-00014.safetensors",
|
668 |
+
"model.layers.59.input_layernorm.weight": "model-00013-of-00014.safetensors",
|
669 |
+
"model.layers.59.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
|
670 |
+
"model.layers.59.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
|
671 |
+
"model.layers.59.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
|
672 |
+
"model.layers.59.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
|
673 |
+
"model.layers.59.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
|
674 |
+
"model.layers.59.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
|
675 |
+
"model.layers.59.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
|
676 |
+
"model.layers.59.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
|
677 |
+
"model.layers.59.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
|
678 |
+
"model.layers.59.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
|
679 |
+
"model.layers.59.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
|
680 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00014.safetensors",
|
681 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
|
682 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
|
683 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
|
684 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
|
685 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
|
686 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
|
687 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
|
688 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
|
689 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
|
690 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
|
691 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
|
692 |
+
"model.layers.60.input_layernorm.weight": "model-00013-of-00014.safetensors",
|
693 |
+
"model.layers.60.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
|
694 |
+
"model.layers.60.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
|
695 |
+
"model.layers.60.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
|
696 |
+
"model.layers.60.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
|
697 |
+
"model.layers.60.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
|
698 |
+
"model.layers.60.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
|
699 |
+
"model.layers.60.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
|
700 |
+
"model.layers.60.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
|
701 |
+
"model.layers.60.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
|
702 |
+
"model.layers.60.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
|
703 |
+
"model.layers.60.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
|
704 |
+
"model.layers.61.input_layernorm.weight": "model-00013-of-00014.safetensors",
|
705 |
+
"model.layers.61.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
|
706 |
+
"model.layers.61.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
|
707 |
+
"model.layers.61.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
|
708 |
+
"model.layers.61.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
|
709 |
+
"model.layers.61.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
|
710 |
+
"model.layers.61.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
|
711 |
+
"model.layers.61.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
|
712 |
+
"model.layers.61.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
|
713 |
+
"model.layers.61.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
|
714 |
+
"model.layers.61.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
|
715 |
+
"model.layers.61.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
|
716 |
+
"model.layers.62.input_layernorm.weight": "model-00013-of-00014.safetensors",
|
717 |
+
"model.layers.62.mlp.down_proj.weight": "model-00013-of-00014.safetensors",
|
718 |
+
"model.layers.62.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
|
719 |
+
"model.layers.62.mlp.up_proj.weight": "model-00013-of-00014.safetensors",
|
720 |
+
"model.layers.62.post_attention_layernorm.weight": "model-00013-of-00014.safetensors",
|
721 |
+
"model.layers.62.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
|
722 |
+
"model.layers.62.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
|
723 |
+
"model.layers.62.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
|
724 |
+
"model.layers.62.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
|
725 |
+
"model.layers.62.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
|
726 |
+
"model.layers.62.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
|
727 |
+
"model.layers.62.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
|
728 |
+
"model.layers.63.input_layernorm.weight": "model-00014-of-00014.safetensors",
|
729 |
+
"model.layers.63.mlp.down_proj.weight": "model-00014-of-00014.safetensors",
|
730 |
+
"model.layers.63.mlp.gate_proj.weight": "model-00013-of-00014.safetensors",
|
731 |
+
"model.layers.63.mlp.up_proj.weight": "model-00014-of-00014.safetensors",
|
732 |
+
"model.layers.63.post_attention_layernorm.weight": "model-00014-of-00014.safetensors",
|
733 |
+
"model.layers.63.self_attn.k_proj.bias": "model-00013-of-00014.safetensors",
|
734 |
+
"model.layers.63.self_attn.k_proj.weight": "model-00013-of-00014.safetensors",
|
735 |
+
"model.layers.63.self_attn.o_proj.weight": "model-00013-of-00014.safetensors",
|
736 |
+
"model.layers.63.self_attn.q_proj.bias": "model-00013-of-00014.safetensors",
|
737 |
+
"model.layers.63.self_attn.q_proj.weight": "model-00013-of-00014.safetensors",
|
738 |
+
"model.layers.63.self_attn.v_proj.bias": "model-00013-of-00014.safetensors",
|
739 |
+
"model.layers.63.self_attn.v_proj.weight": "model-00013-of-00014.safetensors",
|
740 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00014.safetensors",
|
741 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00014.safetensors",
|
742 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
|
743 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00014.safetensors",
|
744 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00014.safetensors",
|
745 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
|
746 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
|
747 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
|
748 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
|
749 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
|
750 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
|
751 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
|
752 |
+
"model.layers.8.input_layernorm.weight": "model-00003-of-00014.safetensors",
|
753 |
+
"model.layers.8.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
|
754 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00014.safetensors",
|
755 |
+
"model.layers.8.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
|
756 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
|
757 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00002-of-00014.safetensors",
|
758 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00014.safetensors",
|
759 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00014.safetensors",
|
760 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00002-of-00014.safetensors",
|
761 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00014.safetensors",
|
762 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00002-of-00014.safetensors",
|
763 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00014.safetensors",
|
764 |
+
"model.layers.9.input_layernorm.weight": "model-00003-of-00014.safetensors",
|
765 |
+
"model.layers.9.mlp.down_proj.weight": "model-00003-of-00014.safetensors",
|
766 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00003-of-00014.safetensors",
|
767 |
+
"model.layers.9.mlp.up_proj.weight": "model-00003-of-00014.safetensors",
|
768 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00003-of-00014.safetensors",
|
769 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00003-of-00014.safetensors",
|
770 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00003-of-00014.safetensors",
|
771 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00003-of-00014.safetensors",
|
772 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00003-of-00014.safetensors",
|
773 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00003-of-00014.safetensors",
|
774 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00003-of-00014.safetensors",
|
775 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00003-of-00014.safetensors",
|
776 |
+
"model.norm.weight": "model-00014-of-00014.safetensors"
|
777 |
+
}
|
778 |
+
}
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad8a35afd8967cbb748405387e44426e43ad127028e826eddc9b67d2ca873c85
|
3 |
+
size 15984
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f338ce80d7c441076bfc8c53b84067a0181f5a14e80c13d5acb8150b659f4d73
|
3 |
+
size 15984
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9fbc9fa428939be10b46779f0eb5cd833e0da426b1cbdee77b3a55b6952235b
|
3 |
+
size 15984
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac55dba0b79d5fa4699d239da2f966d52040d576d31234ac8d4632e6956481bc
|
3 |
+
size 15984
|
rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af2d0c015100768ffa23faf3b6c2d54ea89eb045603e30e55cd211e06ff34972
|
3 |
+
size 15984
|
rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c60a1b40608e34bc801c8231f97b81c53b5290dfaed1b9cd0ccbeca29574a991
|
3 |
+
size 15984
|
rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ad6a142a403eb9aafc4a3a9a856bca648fe31fd22d796867baca31fb13656aa
|
3 |
+
size 15984
|
rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38bc23a138cc800b22881742c0f3f9a71731a9a7111c6058a0077e6274d21773
|
3 |
+
size 15984
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d69387a9f094d5086cb662a4d68368958913df5d18c9a021df6806b5951e8bf0
|
3 |
+
size 1064
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
|
3 |
+
size 11422654
|
tokenizer_config.json
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
},
|
181 |
+
"151665": {
|
182 |
+
"content": "<tool_response>",
|
183 |
+
"lstrip": false,
|
184 |
+
"normalized": false,
|
185 |
+
"rstrip": false,
|
186 |
+
"single_word": false,
|
187 |
+
"special": false
|
188 |
+
},
|
189 |
+
"151666": {
|
190 |
+
"content": "</tool_response>",
|
191 |
+
"lstrip": false,
|
192 |
+
"normalized": false,
|
193 |
+
"rstrip": false,
|
194 |
+
"single_word": false,
|
195 |
+
"special": false
|
196 |
+
},
|
197 |
+
"151667": {
|
198 |
+
"content": "<think>",
|
199 |
+
"lstrip": false,
|
200 |
+
"normalized": false,
|
201 |
+
"rstrip": false,
|
202 |
+
"single_word": false,
|
203 |
+
"special": false
|
204 |
+
},
|
205 |
+
"151668": {
|
206 |
+
"content": "</think>",
|
207 |
+
"lstrip": false,
|
208 |
+
"normalized": false,
|
209 |
+
"rstrip": false,
|
210 |
+
"single_word": false,
|
211 |
+
"special": false
|
212 |
+
}
|
213 |
+
},
|
214 |
+
"additional_special_tokens": [
|
215 |
+
"<|im_start|>",
|
216 |
+
"<|im_end|>",
|
217 |
+
"<|object_ref_start|>",
|
218 |
+
"<|object_ref_end|>",
|
219 |
+
"<|box_start|>",
|
220 |
+
"<|box_end|>",
|
221 |
+
"<|quad_start|>",
|
222 |
+
"<|quad_end|>",
|
223 |
+
"<|vision_start|>",
|
224 |
+
"<|vision_end|>",
|
225 |
+
"<|vision_pad|>",
|
226 |
+
"<|image_pad|>",
|
227 |
+
"<|video_pad|>"
|
228 |
+
],
|
229 |
+
"bos_token": null,
|
230 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- '' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" and not message.tool_calls %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {{- '<|im_start|>' + message.role + '\\n' + content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n<think>\\n' }}\n{%- endif %}\n",
|
231 |
+
"clean_up_tokenization_spaces": false,
|
232 |
+
"eos_token": "<|im_end|>",
|
233 |
+
"errors": "replace",
|
234 |
+
"extra_special_tokens": {},
|
235 |
+
"model_max_length": 131072,
|
236 |
+
"pad_token": "<|endoftext|>",
|
237 |
+
"split_special_tokens": false,
|
238 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
239 |
+
"unk_token": null
|
240 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,2693 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.9921259842519685,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 380,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.005249343832020997,
|
13 |
+
"grad_norm": 1.1348930782232016,
|
14 |
+
"learning_rate": 1.5000000000000002e-07,
|
15 |
+
"loss": 1.1087,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.010498687664041995,
|
20 |
+
"grad_norm": 1.123696373079589,
|
21 |
+
"learning_rate": 3.0000000000000004e-07,
|
22 |
+
"loss": 1.1356,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.015748031496062992,
|
27 |
+
"grad_norm": 1.0989081863562118,
|
28 |
+
"learning_rate": 4.5e-07,
|
29 |
+
"loss": 1.1158,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.02099737532808399,
|
34 |
+
"grad_norm": 1.0628548113414964,
|
35 |
+
"learning_rate": 6.000000000000001e-07,
|
36 |
+
"loss": 1.0986,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.026246719160104987,
|
41 |
+
"grad_norm": 1.0629069543612368,
|
42 |
+
"learning_rate": 7.5e-07,
|
43 |
+
"loss": 1.0727,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.031496062992125984,
|
48 |
+
"grad_norm": 1.1219311917213644,
|
49 |
+
"learning_rate": 9e-07,
|
50 |
+
"loss": 1.1513,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.03674540682414698,
|
55 |
+
"grad_norm": 1.068318638334139,
|
56 |
+
"learning_rate": 1.05e-06,
|
57 |
+
"loss": 1.0978,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.04199475065616798,
|
62 |
+
"grad_norm": 1.0335025624008565,
|
63 |
+
"learning_rate": 1.2000000000000002e-06,
|
64 |
+
"loss": 1.0932,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.047244094488188976,
|
69 |
+
"grad_norm": 0.9514112971268772,
|
70 |
+
"learning_rate": 1.35e-06,
|
71 |
+
"loss": 1.1046,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.05249343832020997,
|
76 |
+
"grad_norm": 0.8944230714776324,
|
77 |
+
"learning_rate": 1.5e-06,
|
78 |
+
"loss": 1.0638,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.05774278215223097,
|
83 |
+
"grad_norm": 0.8720343077794245,
|
84 |
+
"learning_rate": 1.65e-06,
|
85 |
+
"loss": 1.1132,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.06299212598425197,
|
90 |
+
"grad_norm": 0.7519518665820406,
|
91 |
+
"learning_rate": 1.8e-06,
|
92 |
+
"loss": 1.0788,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.06824146981627296,
|
97 |
+
"grad_norm": 0.7768466543241798,
|
98 |
+
"learning_rate": 1.95e-06,
|
99 |
+
"loss": 1.0795,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.07349081364829396,
|
104 |
+
"grad_norm": 0.7109922479048013,
|
105 |
+
"learning_rate": 2.1e-06,
|
106 |
+
"loss": 1.1012,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.07874015748031496,
|
111 |
+
"grad_norm": 0.6312078880187205,
|
112 |
+
"learning_rate": 2.25e-06,
|
113 |
+
"loss": 1.0851,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.08398950131233596,
|
118 |
+
"grad_norm": 0.5514473048370377,
|
119 |
+
"learning_rate": 2.4000000000000003e-06,
|
120 |
+
"loss": 1.1041,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.08923884514435695,
|
125 |
+
"grad_norm": 0.6271281070432462,
|
126 |
+
"learning_rate": 2.55e-06,
|
127 |
+
"loss": 1.0855,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.09448818897637795,
|
132 |
+
"grad_norm": 0.7059888078645049,
|
133 |
+
"learning_rate": 2.7e-06,
|
134 |
+
"loss": 1.0473,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.09973753280839895,
|
139 |
+
"grad_norm": 0.7226157330393405,
|
140 |
+
"learning_rate": 2.85e-06,
|
141 |
+
"loss": 1.0665,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.10498687664041995,
|
146 |
+
"grad_norm": 0.7244742832208652,
|
147 |
+
"learning_rate": 3e-06,
|
148 |
+
"loss": 1.0604,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.11023622047244094,
|
153 |
+
"grad_norm": 0.7088251146482789,
|
154 |
+
"learning_rate": 3.1500000000000003e-06,
|
155 |
+
"loss": 1.0516,
|
156 |
+
"step": 21
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.11548556430446194,
|
160 |
+
"grad_norm": 0.5987242362229293,
|
161 |
+
"learning_rate": 3.3e-06,
|
162 |
+
"loss": 1.084,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.12073490813648294,
|
167 |
+
"grad_norm": 0.5730637810768702,
|
168 |
+
"learning_rate": 3.45e-06,
|
169 |
+
"loss": 1.0621,
|
170 |
+
"step": 23
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.12598425196850394,
|
174 |
+
"grad_norm": 0.5894968443138215,
|
175 |
+
"learning_rate": 3.6e-06,
|
176 |
+
"loss": 1.0797,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.13123359580052493,
|
181 |
+
"grad_norm": 0.5798124303184627,
|
182 |
+
"learning_rate": 3.75e-06,
|
183 |
+
"loss": 1.0035,
|
184 |
+
"step": 25
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.13648293963254593,
|
188 |
+
"grad_norm": 0.643205751513686,
|
189 |
+
"learning_rate": 3.9e-06,
|
190 |
+
"loss": 1.0455,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.14173228346456693,
|
195 |
+
"grad_norm": 0.5621970774702022,
|
196 |
+
"learning_rate": 4.05e-06,
|
197 |
+
"loss": 1.0576,
|
198 |
+
"step": 27
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.14698162729658792,
|
202 |
+
"grad_norm": 0.5506084571895594,
|
203 |
+
"learning_rate": 4.2e-06,
|
204 |
+
"loss": 1.0298,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.15223097112860892,
|
209 |
+
"grad_norm": 0.48741149421912777,
|
210 |
+
"learning_rate": 4.35e-06,
|
211 |
+
"loss": 1.0018,
|
212 |
+
"step": 29
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.15748031496062992,
|
216 |
+
"grad_norm": 0.46403007703544275,
|
217 |
+
"learning_rate": 4.5e-06,
|
218 |
+
"loss": 0.9872,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.16272965879265092,
|
223 |
+
"grad_norm": 0.4754381818573106,
|
224 |
+
"learning_rate": 4.65e-06,
|
225 |
+
"loss": 1.0271,
|
226 |
+
"step": 31
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.1679790026246719,
|
230 |
+
"grad_norm": 0.9362850890979981,
|
231 |
+
"learning_rate": 4.800000000000001e-06,
|
232 |
+
"loss": 1.0437,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.1732283464566929,
|
237 |
+
"grad_norm": 0.47391181595772164,
|
238 |
+
"learning_rate": 4.95e-06,
|
239 |
+
"loss": 1.0437,
|
240 |
+
"step": 33
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.1784776902887139,
|
244 |
+
"grad_norm": 0.5276920454851337,
|
245 |
+
"learning_rate": 5.1e-06,
|
246 |
+
"loss": 1.0557,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.1837270341207349,
|
251 |
+
"grad_norm": 0.4616075133913133,
|
252 |
+
"learning_rate": 5.2500000000000006e-06,
|
253 |
+
"loss": 1.0465,
|
254 |
+
"step": 35
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.1889763779527559,
|
258 |
+
"grad_norm": 0.4555174555636226,
|
259 |
+
"learning_rate": 5.4e-06,
|
260 |
+
"loss": 1.0588,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.1942257217847769,
|
265 |
+
"grad_norm": 0.5071864534648831,
|
266 |
+
"learning_rate": 5.55e-06,
|
267 |
+
"loss": 1.044,
|
268 |
+
"step": 37
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.1994750656167979,
|
272 |
+
"grad_norm": 0.4851367263882934,
|
273 |
+
"learning_rate": 5.7e-06,
|
274 |
+
"loss": 1.0464,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.2047244094488189,
|
279 |
+
"grad_norm": 0.44188022228811896,
|
280 |
+
"learning_rate": 5.85e-06,
|
281 |
+
"loss": 1.0182,
|
282 |
+
"step": 39
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.2099737532808399,
|
286 |
+
"grad_norm": 0.43420740120454643,
|
287 |
+
"learning_rate": 6e-06,
|
288 |
+
"loss": 1.0188,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.2152230971128609,
|
293 |
+
"grad_norm": 0.4291543441241407,
|
294 |
+
"learning_rate": 5.9998719351101036e-06,
|
295 |
+
"loss": 1.0245,
|
296 |
+
"step": 41
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.2204724409448819,
|
300 |
+
"grad_norm": 0.43326370236005163,
|
301 |
+
"learning_rate": 5.999487751374158e-06,
|
302 |
+
"loss": 1.0238,
|
303 |
+
"step": 42
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.22572178477690288,
|
307 |
+
"grad_norm": 0.427571644972227,
|
308 |
+
"learning_rate": 5.998847481592462e-06,
|
309 |
+
"loss": 1.0311,
|
310 |
+
"step": 43
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.23097112860892388,
|
314 |
+
"grad_norm": 0.4215063088273006,
|
315 |
+
"learning_rate": 5.997951180429069e-06,
|
316 |
+
"loss": 0.9925,
|
317 |
+
"step": 44
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.23622047244094488,
|
321 |
+
"grad_norm": 0.4206536914503675,
|
322 |
+
"learning_rate": 5.996798924407118e-06,
|
323 |
+
"loss": 1.003,
|
324 |
+
"step": 45
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.24146981627296588,
|
328 |
+
"grad_norm": 0.40910969064965136,
|
329 |
+
"learning_rate": 5.995390811902302e-06,
|
330 |
+
"loss": 0.9949,
|
331 |
+
"step": 46
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.24671916010498687,
|
335 |
+
"grad_norm": 0.4165775049327623,
|
336 |
+
"learning_rate": 5.993726963134471e-06,
|
337 |
+
"loss": 0.9734,
|
338 |
+
"step": 47
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.25196850393700787,
|
342 |
+
"grad_norm": 0.3832235501001726,
|
343 |
+
"learning_rate": 5.9918075201573645e-06,
|
344 |
+
"loss": 0.9485,
|
345 |
+
"step": 48
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.2572178477690289,
|
349 |
+
"grad_norm": 0.37002495168808525,
|
350 |
+
"learning_rate": 5.9896326468464835e-06,
|
351 |
+
"loss": 0.9358,
|
352 |
+
"step": 49
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.26246719160104987,
|
356 |
+
"grad_norm": 0.44836853406053057,
|
357 |
+
"learning_rate": 5.987202528885104e-06,
|
358 |
+
"loss": 0.9982,
|
359 |
+
"step": 50
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.2677165354330709,
|
363 |
+
"grad_norm": 0.4080608606117312,
|
364 |
+
"learning_rate": 5.984517373748417e-06,
|
365 |
+
"loss": 1.0129,
|
366 |
+
"step": 51
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.27296587926509186,
|
370 |
+
"grad_norm": 0.4001550595702573,
|
371 |
+
"learning_rate": 5.981577410685822e-06,
|
372 |
+
"loss": 0.9788,
|
373 |
+
"step": 52
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.2782152230971129,
|
377 |
+
"grad_norm": 0.41021488877460305,
|
378 |
+
"learning_rate": 5.978382890701347e-06,
|
379 |
+
"loss": 1.0262,
|
380 |
+
"step": 53
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.28346456692913385,
|
384 |
+
"grad_norm": 0.39997016380492506,
|
385 |
+
"learning_rate": 5.9749340865322284e-06,
|
386 |
+
"loss": 1.0275,
|
387 |
+
"step": 54
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.2887139107611549,
|
391 |
+
"grad_norm": 0.3839823787027912,
|
392 |
+
"learning_rate": 5.971231292625615e-06,
|
393 |
+
"loss": 0.9374,
|
394 |
+
"step": 55
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.29396325459317585,
|
398 |
+
"grad_norm": 0.4125068495663659,
|
399 |
+
"learning_rate": 5.967274825113438e-06,
|
400 |
+
"loss": 0.9954,
|
401 |
+
"step": 56
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.2992125984251969,
|
405 |
+
"grad_norm": 0.3908377197765856,
|
406 |
+
"learning_rate": 5.963065021785414e-06,
|
407 |
+
"loss": 0.9671,
|
408 |
+
"step": 57
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.30446194225721784,
|
412 |
+
"grad_norm": 0.3850488592862481,
|
413 |
+
"learning_rate": 5.958602242060207e-06,
|
414 |
+
"loss": 0.9657,
|
415 |
+
"step": 58
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.30971128608923887,
|
419 |
+
"grad_norm": 0.3877990366088493,
|
420 |
+
"learning_rate": 5.95388686695475e-06,
|
421 |
+
"loss": 0.9678,
|
422 |
+
"step": 59
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.31496062992125984,
|
426 |
+
"grad_norm": 0.40470471194287355,
|
427 |
+
"learning_rate": 5.948919299051706e-06,
|
428 |
+
"loss": 1.0149,
|
429 |
+
"step": 60
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.32020997375328086,
|
433 |
+
"grad_norm": 0.42889495063392963,
|
434 |
+
"learning_rate": 5.943699962465096e-06,
|
435 |
+
"loss": 1.033,
|
436 |
+
"step": 61
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.32545931758530183,
|
440 |
+
"grad_norm": 0.39164358737100274,
|
441 |
+
"learning_rate": 5.9382293028040985e-06,
|
442 |
+
"loss": 0.9761,
|
443 |
+
"step": 62
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.33070866141732286,
|
447 |
+
"grad_norm": 0.3869342590567232,
|
448 |
+
"learning_rate": 5.9325077871349975e-06,
|
449 |
+
"loss": 0.9982,
|
450 |
+
"step": 63
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.3359580052493438,
|
454 |
+
"grad_norm": 0.39264627926569035,
|
455 |
+
"learning_rate": 5.9265359039413105e-06,
|
456 |
+
"loss": 0.9667,
|
457 |
+
"step": 64
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.34120734908136485,
|
461 |
+
"grad_norm": 0.3887717698297268,
|
462 |
+
"learning_rate": 5.920314163082079e-06,
|
463 |
+
"loss": 0.9806,
|
464 |
+
"step": 65
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.3464566929133858,
|
468 |
+
"grad_norm": 0.40896336915084297,
|
469 |
+
"learning_rate": 5.913843095748342e-06,
|
470 |
+
"loss": 1.0135,
|
471 |
+
"step": 66
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.35170603674540685,
|
475 |
+
"grad_norm": 0.3610209560875707,
|
476 |
+
"learning_rate": 5.907123254417783e-06,
|
477 |
+
"loss": 0.956,
|
478 |
+
"step": 67
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.3569553805774278,
|
482 |
+
"grad_norm": 0.38154744815823505,
|
483 |
+
"learning_rate": 5.9001552128075625e-06,
|
484 |
+
"loss": 1.0045,
|
485 |
+
"step": 68
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.36220472440944884,
|
489 |
+
"grad_norm": 0.4094826396119445,
|
490 |
+
"learning_rate": 5.892939565825335e-06,
|
491 |
+
"loss": 1.0069,
|
492 |
+
"step": 69
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.3674540682414698,
|
496 |
+
"grad_norm": 0.39129138622932325,
|
497 |
+
"learning_rate": 5.885476929518457e-06,
|
498 |
+
"loss": 0.9525,
|
499 |
+
"step": 70
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.37270341207349084,
|
503 |
+
"grad_norm": 0.3712890701175899,
|
504 |
+
"learning_rate": 5.8777679410213956e-06,
|
505 |
+
"loss": 0.9792,
|
506 |
+
"step": 71
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.3779527559055118,
|
510 |
+
"grad_norm": 0.4086264062600148,
|
511 |
+
"learning_rate": 5.869813258501323e-06,
|
512 |
+
"loss": 0.9926,
|
513 |
+
"step": 72
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.38320209973753283,
|
517 |
+
"grad_norm": 0.368975878599487,
|
518 |
+
"learning_rate": 5.861613561101934e-06,
|
519 |
+
"loss": 0.9643,
|
520 |
+
"step": 73
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.3884514435695538,
|
524 |
+
"grad_norm": 0.36792811629461203,
|
525 |
+
"learning_rate": 5.853169548885461e-06,
|
526 |
+
"loss": 0.9867,
|
527 |
+
"step": 74
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.3937007874015748,
|
531 |
+
"grad_norm": 0.3566251893981936,
|
532 |
+
"learning_rate": 5.844481942772898e-06,
|
533 |
+
"loss": 1.0069,
|
534 |
+
"step": 75
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.3989501312335958,
|
538 |
+
"grad_norm": 0.4578529359685586,
|
539 |
+
"learning_rate": 5.835551484482459e-06,
|
540 |
+
"loss": 1.0173,
|
541 |
+
"step": 76
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.4041994750656168,
|
545 |
+
"grad_norm": 0.3935925285922137,
|
546 |
+
"learning_rate": 5.826378936466249e-06,
|
547 |
+
"loss": 0.9743,
|
548 |
+
"step": 77
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.4094488188976378,
|
552 |
+
"grad_norm": 0.4109939217838428,
|
553 |
+
"learning_rate": 5.81696508184517e-06,
|
554 |
+
"loss": 0.9866,
|
555 |
+
"step": 78
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.4146981627296588,
|
559 |
+
"grad_norm": 0.3839870332489822,
|
560 |
+
"learning_rate": 5.807310724342058e-06,
|
561 |
+
"loss": 0.9516,
|
562 |
+
"step": 79
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.4199475065616798,
|
566 |
+
"grad_norm": 0.3774576797883406,
|
567 |
+
"learning_rate": 5.797416688213067e-06,
|
568 |
+
"loss": 0.9895,
|
569 |
+
"step": 80
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.4251968503937008,
|
573 |
+
"grad_norm": 0.3817468964498129,
|
574 |
+
"learning_rate": 5.787283818177297e-06,
|
575 |
+
"loss": 0.9632,
|
576 |
+
"step": 81
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.4304461942257218,
|
580 |
+
"grad_norm": 0.60843002346461,
|
581 |
+
"learning_rate": 5.776912979344669e-06,
|
582 |
+
"loss": 1.0166,
|
583 |
+
"step": 82
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.4356955380577428,
|
587 |
+
"grad_norm": 0.3858713700245362,
|
588 |
+
"learning_rate": 5.766305057142073e-06,
|
589 |
+
"loss": 0.9976,
|
590 |
+
"step": 83
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.4409448818897638,
|
594 |
+
"grad_norm": 0.3724153436541016,
|
595 |
+
"learning_rate": 5.755460957237769e-06,
|
596 |
+
"loss": 0.9645,
|
597 |
+
"step": 84
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.4461942257217848,
|
601 |
+
"grad_norm": 0.38201105695018567,
|
602 |
+
"learning_rate": 5.744381605464064e-06,
|
603 |
+
"loss": 0.9899,
|
604 |
+
"step": 85
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.45144356955380577,
|
608 |
+
"grad_norm": 0.38383930861007165,
|
609 |
+
"learning_rate": 5.7330679477382655e-06,
|
610 |
+
"loss": 0.9919,
|
611 |
+
"step": 86
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.4566929133858268,
|
615 |
+
"grad_norm": 0.4078870418259581,
|
616 |
+
"learning_rate": 5.7215209499819296e-06,
|
617 |
+
"loss": 0.9797,
|
618 |
+
"step": 87
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.46194225721784776,
|
622 |
+
"grad_norm": 0.38463767466523974,
|
623 |
+
"learning_rate": 5.709741598038387e-06,
|
624 |
+
"loss": 0.9597,
|
625 |
+
"step": 88
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.4671916010498688,
|
629 |
+
"grad_norm": 0.36309855116472584,
|
630 |
+
"learning_rate": 5.697730897588577e-06,
|
631 |
+
"loss": 0.9737,
|
632 |
+
"step": 89
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.47244094488188976,
|
636 |
+
"grad_norm": 0.4106701446638758,
|
637 |
+
"learning_rate": 5.685489874065187e-06,
|
638 |
+
"loss": 0.9683,
|
639 |
+
"step": 90
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.4776902887139108,
|
643 |
+
"grad_norm": 0.37110409255145443,
|
644 |
+
"learning_rate": 5.673019572565103e-06,
|
645 |
+
"loss": 1.0418,
|
646 |
+
"step": 91
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.48293963254593175,
|
650 |
+
"grad_norm": 0.3558357783330656,
|
651 |
+
"learning_rate": 5.660321057760186e-06,
|
652 |
+
"loss": 1.0055,
|
653 |
+
"step": 92
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.4881889763779528,
|
657 |
+
"grad_norm": 0.40499489938404787,
|
658 |
+
"learning_rate": 5.6473954138063674e-06,
|
659 |
+
"loss": 1.0113,
|
660 |
+
"step": 93
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.49343832020997375,
|
664 |
+
"grad_norm": 0.39428526462199764,
|
665 |
+
"learning_rate": 5.634243744251094e-06,
|
666 |
+
"loss": 0.9875,
|
667 |
+
"step": 94
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.49868766404199477,
|
671 |
+
"grad_norm": 0.3711741011240413,
|
672 |
+
"learning_rate": 5.620867171939109e-06,
|
673 |
+
"loss": 0.9749,
|
674 |
+
"step": 95
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.5039370078740157,
|
678 |
+
"grad_norm": 0.3961340085644134,
|
679 |
+
"learning_rate": 5.607266838916585e-06,
|
680 |
+
"loss": 0.982,
|
681 |
+
"step": 96
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.5091863517060368,
|
685 |
+
"grad_norm": 0.3784646685814138,
|
686 |
+
"learning_rate": 5.593443906333624e-06,
|
687 |
+
"loss": 0.9957,
|
688 |
+
"step": 97
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.5144356955380578,
|
692 |
+
"grad_norm": 0.3750460397069026,
|
693 |
+
"learning_rate": 5.579399554345118e-06,
|
694 |
+
"loss": 0.9755,
|
695 |
+
"step": 98
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.5196850393700787,
|
699 |
+
"grad_norm": 0.3746718538274792,
|
700 |
+
"learning_rate": 5.565134982009994e-06,
|
701 |
+
"loss": 0.9736,
|
702 |
+
"step": 99
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.5249343832020997,
|
706 |
+
"grad_norm": 0.38418890409196027,
|
707 |
+
"learning_rate": 5.550651407188843e-06,
|
708 |
+
"loss": 0.9506,
|
709 |
+
"step": 100
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.5301837270341208,
|
713 |
+
"grad_norm": 0.422976375435725,
|
714 |
+
"learning_rate": 5.535950066439941e-06,
|
715 |
+
"loss": 1.0141,
|
716 |
+
"step": 101
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.5354330708661418,
|
720 |
+
"grad_norm": 0.38354451243133536,
|
721 |
+
"learning_rate": 5.521032214913679e-06,
|
722 |
+
"loss": 0.9618,
|
723 |
+
"step": 102
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.5406824146981627,
|
727 |
+
"grad_norm": 0.38257660011773076,
|
728 |
+
"learning_rate": 5.505899126245397e-06,
|
729 |
+
"loss": 0.939,
|
730 |
+
"step": 103
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.5459317585301837,
|
734 |
+
"grad_norm": 0.3768438915225408,
|
735 |
+
"learning_rate": 5.490552092446652e-06,
|
736 |
+
"loss": 0.9675,
|
737 |
+
"step": 104
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.5511811023622047,
|
741 |
+
"grad_norm": 0.3749655286727107,
|
742 |
+
"learning_rate": 5.474992423794907e-06,
|
743 |
+
"loss": 0.9592,
|
744 |
+
"step": 105
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.5564304461942258,
|
748 |
+
"grad_norm": 0.38461916993489687,
|
749 |
+
"learning_rate": 5.459221448721664e-06,
|
750 |
+
"loss": 0.9623,
|
751 |
+
"step": 106
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.5616797900262467,
|
755 |
+
"grad_norm": 0.35648642966931204,
|
756 |
+
"learning_rate": 5.443240513699045e-06,
|
757 |
+
"loss": 0.985,
|
758 |
+
"step": 107
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.5669291338582677,
|
762 |
+
"grad_norm": 0.4051560712719681,
|
763 |
+
"learning_rate": 5.427050983124842e-06,
|
764 |
+
"loss": 0.9407,
|
765 |
+
"step": 108
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.5721784776902887,
|
769 |
+
"grad_norm": 0.3769879713701903,
|
770 |
+
"learning_rate": 5.410654239206021e-06,
|
771 |
+
"loss": 0.968,
|
772 |
+
"step": 109
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.5774278215223098,
|
776 |
+
"grad_norm": 0.3746822083724367,
|
777 |
+
"learning_rate": 5.394051681840719e-06,
|
778 |
+
"loss": 0.9497,
|
779 |
+
"step": 110
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.5826771653543307,
|
783 |
+
"grad_norm": 0.3987231911136733,
|
784 |
+
"learning_rate": 5.3772447284987216e-06,
|
785 |
+
"loss": 0.961,
|
786 |
+
"step": 111
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.5879265091863517,
|
790 |
+
"grad_norm": 0.37848222525971176,
|
791 |
+
"learning_rate": 5.36023481410045e-06,
|
792 |
+
"loss": 0.9707,
|
793 |
+
"step": 112
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.5931758530183727,
|
797 |
+
"grad_norm": 0.3794904855253974,
|
798 |
+
"learning_rate": 5.343023390894446e-06,
|
799 |
+
"loss": 0.9714,
|
800 |
+
"step": 113
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.5984251968503937,
|
804 |
+
"grad_norm": 0.37452267525256994,
|
805 |
+
"learning_rate": 5.325611928333389e-06,
|
806 |
+
"loss": 0.9406,
|
807 |
+
"step": 114
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.6036745406824147,
|
811 |
+
"grad_norm": 0.39474437059829304,
|
812 |
+
"learning_rate": 5.308001912948637e-06,
|
813 |
+
"loss": 0.9626,
|
814 |
+
"step": 115
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.6089238845144357,
|
818 |
+
"grad_norm": 0.4023921986663554,
|
819 |
+
"learning_rate": 5.290194848223309e-06,
|
820 |
+
"loss": 0.9889,
|
821 |
+
"step": 116
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.6141732283464567,
|
825 |
+
"grad_norm": 0.39963771712171875,
|
826 |
+
"learning_rate": 5.272192254463929e-06,
|
827 |
+
"loss": 0.9639,
|
828 |
+
"step": 117
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.6194225721784777,
|
832 |
+
"grad_norm": 0.3893586064595733,
|
833 |
+
"learning_rate": 5.2539956686706205e-06,
|
834 |
+
"loss": 0.9469,
|
835 |
+
"step": 118
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.6246719160104987,
|
839 |
+
"grad_norm": 0.4651495625439333,
|
840 |
+
"learning_rate": 5.2356066444058875e-06,
|
841 |
+
"loss": 0.9658,
|
842 |
+
"step": 119
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.6299212598425197,
|
846 |
+
"grad_norm": 0.39599728107932586,
|
847 |
+
"learning_rate": 5.217026751661978e-06,
|
848 |
+
"loss": 1.0137,
|
849 |
+
"step": 120
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.6351706036745407,
|
853 |
+
"grad_norm": 0.406988761369817,
|
854 |
+
"learning_rate": 5.198257576726835e-06,
|
855 |
+
"loss": 0.9306,
|
856 |
+
"step": 121
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.6404199475065617,
|
860 |
+
"grad_norm": 0.3611939094322339,
|
861 |
+
"learning_rate": 5.179300722048673e-06,
|
862 |
+
"loss": 0.9462,
|
863 |
+
"step": 122
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 0.6456692913385826,
|
867 |
+
"grad_norm": 0.3809841775392484,
|
868 |
+
"learning_rate": 5.1601578060991645e-06,
|
869 |
+
"loss": 0.953,
|
870 |
+
"step": 123
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 0.6509186351706037,
|
874 |
+
"grad_norm": 0.46022843064705843,
|
875 |
+
"learning_rate": 5.1408304632352575e-06,
|
876 |
+
"loss": 0.9422,
|
877 |
+
"step": 124
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 0.6561679790026247,
|
881 |
+
"grad_norm": 0.3979704646560941,
|
882 |
+
"learning_rate": 5.1213203435596425e-06,
|
883 |
+
"loss": 0.9751,
|
884 |
+
"step": 125
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.6614173228346457,
|
888 |
+
"grad_norm": 0.39388496260457084,
|
889 |
+
"learning_rate": 5.101629112779873e-06,
|
890 |
+
"loss": 0.9722,
|
891 |
+
"step": 126
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.6666666666666666,
|
895 |
+
"grad_norm": 0.3899148438115094,
|
896 |
+
"learning_rate": 5.08175845206615e-06,
|
897 |
+
"loss": 0.9652,
|
898 |
+
"step": 127
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.6719160104986877,
|
902 |
+
"grad_norm": 0.37391882787694275,
|
903 |
+
"learning_rate": 5.061710057907788e-06,
|
904 |
+
"loss": 0.9621,
|
905 |
+
"step": 128
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 0.6771653543307087,
|
909 |
+
"grad_norm": 0.39500875865406576,
|
910 |
+
"learning_rate": 5.041485641968385e-06,
|
911 |
+
"loss": 0.9899,
|
912 |
+
"step": 129
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 0.6824146981627297,
|
916 |
+
"grad_norm": 0.37540362490802714,
|
917 |
+
"learning_rate": 5.021086930939672e-06,
|
918 |
+
"loss": 0.9472,
|
919 |
+
"step": 130
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.6876640419947506,
|
923 |
+
"grad_norm": 0.3940788728379769,
|
924 |
+
"learning_rate": 5.000515666394105e-06,
|
925 |
+
"loss": 0.9479,
|
926 |
+
"step": 131
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.6929133858267716,
|
930 |
+
"grad_norm": 0.3919125365655477,
|
931 |
+
"learning_rate": 4.979773604636169e-06,
|
932 |
+
"loss": 0.9624,
|
933 |
+
"step": 132
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.6981627296587927,
|
937 |
+
"grad_norm": 0.3804552314744538,
|
938 |
+
"learning_rate": 4.958862516552433e-06,
|
939 |
+
"loss": 0.9806,
|
940 |
+
"step": 133
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 0.7034120734908137,
|
944 |
+
"grad_norm": 0.3674434286105591,
|
945 |
+
"learning_rate": 4.937784187460362e-06,
|
946 |
+
"loss": 0.9511,
|
947 |
+
"step": 134
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 0.7086614173228346,
|
951 |
+
"grad_norm": 0.4109777494732396,
|
952 |
+
"learning_rate": 4.916540416955884e-06,
|
953 |
+
"loss": 0.9943,
|
954 |
+
"step": 135
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.7139107611548556,
|
958 |
+
"grad_norm": 0.40231567788837497,
|
959 |
+
"learning_rate": 4.895133018759753e-06,
|
960 |
+
"loss": 0.9798,
|
961 |
+
"step": 136
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 0.7191601049868767,
|
965 |
+
"grad_norm": 0.3721834479908975,
|
966 |
+
"learning_rate": 4.873563820562698e-06,
|
967 |
+
"loss": 0.9504,
|
968 |
+
"step": 137
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.7244094488188977,
|
972 |
+
"grad_norm": 0.36127526200518306,
|
973 |
+
"learning_rate": 4.851834663869379e-06,
|
974 |
+
"loss": 0.9517,
|
975 |
+
"step": 138
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.7296587926509186,
|
979 |
+
"grad_norm": 0.3513827139135777,
|
980 |
+
"learning_rate": 4.82994740384117e-06,
|
981 |
+
"loss": 0.9835,
|
982 |
+
"step": 139
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 0.7349081364829396,
|
986 |
+
"grad_norm": 0.36760728272750326,
|
987 |
+
"learning_rate": 4.80790390913777e-06,
|
988 |
+
"loss": 0.9503,
|
989 |
+
"step": 140
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 0.7401574803149606,
|
993 |
+
"grad_norm": 0.36275280721999276,
|
994 |
+
"learning_rate": 4.785706061757656e-06,
|
995 |
+
"loss": 0.9743,
|
996 |
+
"step": 141
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 0.7454068241469817,
|
1000 |
+
"grad_norm": 0.3733380512329921,
|
1001 |
+
"learning_rate": 4.763355756877419e-06,
|
1002 |
+
"loss": 0.9384,
|
1003 |
+
"step": 142
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 0.7506561679790026,
|
1007 |
+
"grad_norm": 0.3801691027568987,
|
1008 |
+
"learning_rate": 4.740854902689947e-06,
|
1009 |
+
"loss": 0.9296,
|
1010 |
+
"step": 143
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.7559055118110236,
|
1014 |
+
"grad_norm": 0.39053906811778566,
|
1015 |
+
"learning_rate": 4.718205420241516e-06,
|
1016 |
+
"loss": 0.9488,
|
1017 |
+
"step": 144
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.7611548556430446,
|
1021 |
+
"grad_norm": 0.3923993707534958,
|
1022 |
+
"learning_rate": 4.695409243267776e-06,
|
1023 |
+
"loss": 0.9383,
|
1024 |
+
"step": 145
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 0.7664041994750657,
|
1028 |
+
"grad_norm": 0.364792552828712,
|
1029 |
+
"learning_rate": 4.672468318028657e-06,
|
1030 |
+
"loss": 0.9193,
|
1031 |
+
"step": 146
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 0.7716535433070866,
|
1035 |
+
"grad_norm": 0.35070825551906964,
|
1036 |
+
"learning_rate": 4.649384603142202e-06,
|
1037 |
+
"loss": 0.9164,
|
1038 |
+
"step": 147
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 0.7769028871391076,
|
1042 |
+
"grad_norm": 0.37099778180795795,
|
1043 |
+
"learning_rate": 4.626160069417348e-06,
|
1044 |
+
"loss": 0.9425,
|
1045 |
+
"step": 148
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 0.7821522309711286,
|
1049 |
+
"grad_norm": 0.36954118968922517,
|
1050 |
+
"learning_rate": 4.602796699685665e-06,
|
1051 |
+
"loss": 0.9265,
|
1052 |
+
"step": 149
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.7874015748031497,
|
1056 |
+
"grad_norm": 0.4076466706382121,
|
1057 |
+
"learning_rate": 4.579296488632067e-06,
|
1058 |
+
"loss": 1.0133,
|
1059 |
+
"step": 150
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.7926509186351706,
|
1063 |
+
"grad_norm": 0.4015334925568992,
|
1064 |
+
"learning_rate": 4.5556614426245165e-06,
|
1065 |
+
"loss": 0.9486,
|
1066 |
+
"step": 151
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 0.7979002624671916,
|
1070 |
+
"grad_norm": 0.39628644809730684,
|
1071 |
+
"learning_rate": 4.5318935795427206e-06,
|
1072 |
+
"loss": 0.9605,
|
1073 |
+
"step": 152
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 0.8031496062992126,
|
1077 |
+
"grad_norm": 0.36792154742540445,
|
1078 |
+
"learning_rate": 4.507994928605862e-06,
|
1079 |
+
"loss": 0.9287,
|
1080 |
+
"step": 153
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 0.8083989501312336,
|
1084 |
+
"grad_norm": 0.3887839296706913,
|
1085 |
+
"learning_rate": 4.483967530199337e-06,
|
1086 |
+
"loss": 0.951,
|
1087 |
+
"step": 154
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 0.8136482939632546,
|
1091 |
+
"grad_norm": 0.36716852968968616,
|
1092 |
+
"learning_rate": 4.459813435700569e-06,
|
1093 |
+
"loss": 0.9702,
|
1094 |
+
"step": 155
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.8188976377952756,
|
1098 |
+
"grad_norm": 0.3533521076976156,
|
1099 |
+
"learning_rate": 4.4355347073038595e-06,
|
1100 |
+
"loss": 0.9612,
|
1101 |
+
"step": 156
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.8241469816272966,
|
1105 |
+
"grad_norm": 0.3499649930079787,
|
1106 |
+
"learning_rate": 4.411133417844328e-06,
|
1107 |
+
"loss": 0.9599,
|
1108 |
+
"step": 157
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 0.8293963254593176,
|
1112 |
+
"grad_norm": 0.38582146832565867,
|
1113 |
+
"learning_rate": 4.38661165062094e-06,
|
1114 |
+
"loss": 0.9894,
|
1115 |
+
"step": 158
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 0.8346456692913385,
|
1119 |
+
"grad_norm": 0.39040836855795735,
|
1120 |
+
"learning_rate": 4.36197149921864e-06,
|
1121 |
+
"loss": 0.9747,
|
1122 |
+
"step": 159
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 0.8398950131233596,
|
1126 |
+
"grad_norm": 0.3798580758700489,
|
1127 |
+
"learning_rate": 4.3372150673296155e-06,
|
1128 |
+
"loss": 0.9654,
|
1129 |
+
"step": 160
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 0.8451443569553806,
|
1133 |
+
"grad_norm": 0.3764456540061034,
|
1134 |
+
"learning_rate": 4.3123444685736795e-06,
|
1135 |
+
"loss": 0.9823,
|
1136 |
+
"step": 161
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.8503937007874016,
|
1140 |
+
"grad_norm": 0.3771195417830333,
|
1141 |
+
"learning_rate": 4.287361826317827e-06,
|
1142 |
+
"loss": 0.9456,
|
1143 |
+
"step": 162
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.8556430446194225,
|
1147 |
+
"grad_norm": 0.37650137746409273,
|
1148 |
+
"learning_rate": 4.262269273494946e-06,
|
1149 |
+
"loss": 1.0022,
|
1150 |
+
"step": 163
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 0.8608923884514436,
|
1154 |
+
"grad_norm": 0.38148353077474145,
|
1155 |
+
"learning_rate": 4.237068952421711e-06,
|
1156 |
+
"loss": 0.964,
|
1157 |
+
"step": 164
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 0.8661417322834646,
|
1161 |
+
"grad_norm": 0.3982519128695332,
|
1162 |
+
"learning_rate": 4.2117630146156845e-06,
|
1163 |
+
"loss": 0.9673,
|
1164 |
+
"step": 165
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 0.8713910761154856,
|
1168 |
+
"grad_norm": 0.36000775624632003,
|
1169 |
+
"learning_rate": 4.186353620611627e-06,
|
1170 |
+
"loss": 0.9359,
|
1171 |
+
"step": 166
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 0.8766404199475065,
|
1175 |
+
"grad_norm": 0.36850454735662447,
|
1176 |
+
"learning_rate": 4.160842939777036e-06,
|
1177 |
+
"loss": 0.9422,
|
1178 |
+
"step": 167
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.8818897637795275,
|
1182 |
+
"grad_norm": 0.37804115639757085,
|
1183 |
+
"learning_rate": 4.135233150126931e-06,
|
1184 |
+
"loss": 0.9454,
|
1185 |
+
"step": 168
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.8871391076115486,
|
1189 |
+
"grad_norm": 0.3689383402086321,
|
1190 |
+
"learning_rate": 4.109526438137908e-06,
|
1191 |
+
"loss": 0.9455,
|
1192 |
+
"step": 169
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 0.8923884514435696,
|
1196 |
+
"grad_norm": 0.46527154775209717,
|
1197 |
+
"learning_rate": 4.08372499856146e-06,
|
1198 |
+
"loss": 0.9386,
|
1199 |
+
"step": 170
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 0.8976377952755905,
|
1203 |
+
"grad_norm": 0.45653306710128705,
|
1204 |
+
"learning_rate": 4.0578310342365975e-06,
|
1205 |
+
"loss": 0.9616,
|
1206 |
+
"step": 171
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 0.9028871391076115,
|
1210 |
+
"grad_norm": 0.3773630567359451,
|
1211 |
+
"learning_rate": 4.031846755901785e-06,
|
1212 |
+
"loss": 0.9285,
|
1213 |
+
"step": 172
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 0.9081364829396326,
|
1217 |
+
"grad_norm": 0.3644595191521506,
|
1218 |
+
"learning_rate": 4.005774382006182e-06,
|
1219 |
+
"loss": 0.9663,
|
1220 |
+
"step": 173
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 0.9133858267716536,
|
1224 |
+
"grad_norm": 0.3539767481135477,
|
1225 |
+
"learning_rate": 3.97961613852025e-06,
|
1226 |
+
"loss": 0.9564,
|
1227 |
+
"step": 174
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 0.9186351706036745,
|
1231 |
+
"grad_norm": 0.3819676152776953,
|
1232 |
+
"learning_rate": 3.953374258745705e-06,
|
1233 |
+
"loss": 0.9607,
|
1234 |
+
"step": 175
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 0.9238845144356955,
|
1238 |
+
"grad_norm": 0.38397675786726637,
|
1239 |
+
"learning_rate": 3.927050983124842e-06,
|
1240 |
+
"loss": 0.9539,
|
1241 |
+
"step": 176
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 0.9291338582677166,
|
1245 |
+
"grad_norm": 0.3979084367711538,
|
1246 |
+
"learning_rate": 3.900648559049258e-06,
|
1247 |
+
"loss": 0.9505,
|
1248 |
+
"step": 177
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 0.9343832020997376,
|
1252 |
+
"grad_norm": 0.3756154385935223,
|
1253 |
+
"learning_rate": 3.874169240667974e-06,
|
1254 |
+
"loss": 0.9519,
|
1255 |
+
"step": 178
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 0.9396325459317585,
|
1259 |
+
"grad_norm": 0.40551973597201274,
|
1260 |
+
"learning_rate": 3.847615288694985e-06,
|
1261 |
+
"loss": 0.9727,
|
1262 |
+
"step": 179
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 0.9448818897637795,
|
1266 |
+
"grad_norm": 0.4149625851710124,
|
1267 |
+
"learning_rate": 3.820988970216249e-06,
|
1268 |
+
"loss": 0.9464,
|
1269 |
+
"step": 180
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 0.9501312335958005,
|
1273 |
+
"grad_norm": 0.35739115830542967,
|
1274 |
+
"learning_rate": 3.7942925584961272e-06,
|
1275 |
+
"loss": 0.9427,
|
1276 |
+
"step": 181
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 0.9553805774278216,
|
1280 |
+
"grad_norm": 0.3759540038847051,
|
1281 |
+
"learning_rate": 3.767528332783307e-06,
|
1282 |
+
"loss": 0.9679,
|
1283 |
+
"step": 182
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 0.9606299212598425,
|
1287 |
+
"grad_norm": 0.3525867658299593,
|
1288 |
+
"learning_rate": 3.740698578116199e-06,
|
1289 |
+
"loss": 0.9183,
|
1290 |
+
"step": 183
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 0.9658792650918635,
|
1294 |
+
"grad_norm": 0.3557123352774738,
|
1295 |
+
"learning_rate": 3.7138055851278564e-06,
|
1296 |
+
"loss": 0.9383,
|
1297 |
+
"step": 184
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 0.9711286089238845,
|
1301 |
+
"grad_norm": 0.3623514252763418,
|
1302 |
+
"learning_rate": 3.6868516498504025e-06,
|
1303 |
+
"loss": 0.9246,
|
1304 |
+
"step": 185
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 0.9763779527559056,
|
1308 |
+
"grad_norm": 0.38495496418054853,
|
1309 |
+
"learning_rate": 3.6598390735190066e-06,
|
1310 |
+
"loss": 0.9612,
|
1311 |
+
"step": 186
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 0.9816272965879265,
|
1315 |
+
"grad_norm": 0.3648599004428126,
|
1316 |
+
"learning_rate": 3.63277016237541e-06,
|
1317 |
+
"loss": 0.9293,
|
1318 |
+
"step": 187
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 0.9868766404199475,
|
1322 |
+
"grad_norm": 0.38871547084803876,
|
1323 |
+
"learning_rate": 3.6056472274710305e-06,
|
1324 |
+
"loss": 0.9973,
|
1325 |
+
"step": 188
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 0.9921259842519685,
|
1329 |
+
"grad_norm": 0.38590844403642666,
|
1330 |
+
"learning_rate": 3.578472584469651e-06,
|
1331 |
+
"loss": 0.9457,
|
1332 |
+
"step": 189
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 0.9973753280839895,
|
1336 |
+
"grad_norm": 0.3872507088649178,
|
1337 |
+
"learning_rate": 3.5512485534497116e-06,
|
1338 |
+
"loss": 0.9462,
|
1339 |
+
"step": 190
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 1.0,
|
1343 |
+
"grad_norm": 0.3872507088649178,
|
1344 |
+
"learning_rate": 3.523977458706237e-06,
|
1345 |
+
"loss": 0.9693,
|
1346 |
+
"step": 191
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 1.005249343832021,
|
1350 |
+
"grad_norm": 0.6232728744646114,
|
1351 |
+
"learning_rate": 3.49666162855239e-06,
|
1352 |
+
"loss": 0.887,
|
1353 |
+
"step": 192
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 1.010498687664042,
|
1357 |
+
"grad_norm": 0.4149641950734625,
|
1358 |
+
"learning_rate": 3.469303395120693e-06,
|
1359 |
+
"loss": 0.8826,
|
1360 |
+
"step": 193
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 1.015748031496063,
|
1364 |
+
"grad_norm": 0.37273340109017755,
|
1365 |
+
"learning_rate": 3.441905094163913e-06,
|
1366 |
+
"loss": 0.8893,
|
1367 |
+
"step": 194
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 1.020997375328084,
|
1371 |
+
"grad_norm": 0.4113832689982837,
|
1372 |
+
"learning_rate": 3.414469064855647e-06,
|
1373 |
+
"loss": 0.9205,
|
1374 |
+
"step": 195
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 1.026246719160105,
|
1378 |
+
"grad_norm": 0.49485155842511663,
|
1379 |
+
"learning_rate": 3.3869976495906104e-06,
|
1380 |
+
"loss": 0.9074,
|
1381 |
+
"step": 196
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 1.031496062992126,
|
1385 |
+
"grad_norm": 0.3736781934252868,
|
1386 |
+
"learning_rate": 3.3594931937846498e-06,
|
1387 |
+
"loss": 0.8966,
|
1388 |
+
"step": 197
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 1.036745406824147,
|
1392 |
+
"grad_norm": 0.3758650059773124,
|
1393 |
+
"learning_rate": 3.3319580456745023e-06,
|
1394 |
+
"loss": 0.8759,
|
1395 |
+
"step": 198
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 1.041994750656168,
|
1399 |
+
"grad_norm": 0.4056031624712629,
|
1400 |
+
"learning_rate": 3.3043945561173092e-06,
|
1401 |
+
"loss": 0.8788,
|
1402 |
+
"step": 199
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 1.047244094488189,
|
1406 |
+
"grad_norm": 0.36344982085137467,
|
1407 |
+
"learning_rate": 3.2768050783899063e-06,
|
1408 |
+
"loss": 0.873,
|
1409 |
+
"step": 200
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 1.05249343832021,
|
1413 |
+
"grad_norm": 0.3760103676246,
|
1414 |
+
"learning_rate": 3.249191967987912e-06,
|
1415 |
+
"loss": 0.899,
|
1416 |
+
"step": 201
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 1.057742782152231,
|
1420 |
+
"grad_norm": 0.39433477834527153,
|
1421 |
+
"learning_rate": 3.221557582424622e-06,
|
1422 |
+
"loss": 0.9019,
|
1423 |
+
"step": 202
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 1.0629921259842519,
|
1427 |
+
"grad_norm": 0.3595753440791428,
|
1428 |
+
"learning_rate": 3.1939042810297328e-06,
|
1429 |
+
"loss": 0.8781,
|
1430 |
+
"step": 203
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 1.068241469816273,
|
1434 |
+
"grad_norm": 0.3743448170598354,
|
1435 |
+
"learning_rate": 3.16623442474791e-06,
|
1436 |
+
"loss": 0.8689,
|
1437 |
+
"step": 204
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 1.073490813648294,
|
1441 |
+
"grad_norm": 0.3618551186966609,
|
1442 |
+
"learning_rate": 3.138550375937219e-06,
|
1443 |
+
"loss": 0.9094,
|
1444 |
+
"step": 205
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 1.078740157480315,
|
1448 |
+
"grad_norm": 0.36577516842050983,
|
1449 |
+
"learning_rate": 3.1108544981674356e-06,
|
1450 |
+
"loss": 0.8668,
|
1451 |
+
"step": 206
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 1.083989501312336,
|
1455 |
+
"grad_norm": 0.3985134455319658,
|
1456 |
+
"learning_rate": 3.0831491560182495e-06,
|
1457 |
+
"loss": 0.9016,
|
1458 |
+
"step": 207
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 1.0892388451443569,
|
1462 |
+
"grad_norm": 0.37808489525197075,
|
1463 |
+
"learning_rate": 3.0554367148773897e-06,
|
1464 |
+
"loss": 0.895,
|
1465 |
+
"step": 208
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 1.094488188976378,
|
1469 |
+
"grad_norm": 0.4112784941005797,
|
1470 |
+
"learning_rate": 3.027719540738673e-06,
|
1471 |
+
"loss": 0.859,
|
1472 |
+
"step": 209
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 1.099737532808399,
|
1476 |
+
"grad_norm": 0.3830296759827936,
|
1477 |
+
"learning_rate": 3e-06,
|
1478 |
+
"loss": 0.8569,
|
1479 |
+
"step": 210
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 1.10498687664042,
|
1483 |
+
"grad_norm": 0.3930755503999148,
|
1484 |
+
"learning_rate": 2.972280459261328e-06,
|
1485 |
+
"loss": 0.8774,
|
1486 |
+
"step": 211
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 1.110236220472441,
|
1490 |
+
"grad_norm": 0.36738851637178116,
|
1491 |
+
"learning_rate": 2.944563285122611e-06,
|
1492 |
+
"loss": 0.9086,
|
1493 |
+
"step": 212
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 1.1154855643044619,
|
1497 |
+
"grad_norm": 0.3897160841039193,
|
1498 |
+
"learning_rate": 2.9168508439817515e-06,
|
1499 |
+
"loss": 0.889,
|
1500 |
+
"step": 213
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 1.120734908136483,
|
1504 |
+
"grad_norm": 0.39858146379374537,
|
1505 |
+
"learning_rate": 2.889145501832566e-06,
|
1506 |
+
"loss": 0.8964,
|
1507 |
+
"step": 214
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 1.125984251968504,
|
1511 |
+
"grad_norm": 0.3739395525411432,
|
1512 |
+
"learning_rate": 2.861449624062782e-06,
|
1513 |
+
"loss": 0.8884,
|
1514 |
+
"step": 215
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 1.1312335958005248,
|
1518 |
+
"grad_norm": 0.3755768464864809,
|
1519 |
+
"learning_rate": 2.83376557525209e-06,
|
1520 |
+
"loss": 0.851,
|
1521 |
+
"step": 216
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 1.136482939632546,
|
1525 |
+
"grad_norm": 0.38260315757882735,
|
1526 |
+
"learning_rate": 2.8060957189702674e-06,
|
1527 |
+
"loss": 0.9152,
|
1528 |
+
"step": 217
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 1.141732283464567,
|
1532 |
+
"grad_norm": 0.4205379839527009,
|
1533 |
+
"learning_rate": 2.7784424175753784e-06,
|
1534 |
+
"loss": 0.8683,
|
1535 |
+
"step": 218
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 1.1469816272965878,
|
1539 |
+
"grad_norm": 0.38325260941818995,
|
1540 |
+
"learning_rate": 2.7508080320120888e-06,
|
1541 |
+
"loss": 0.8943,
|
1542 |
+
"step": 219
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 1.152230971128609,
|
1546 |
+
"grad_norm": 0.3763198826603672,
|
1547 |
+
"learning_rate": 2.7231949216100943e-06,
|
1548 |
+
"loss": 0.8676,
|
1549 |
+
"step": 220
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 1.1574803149606299,
|
1553 |
+
"grad_norm": 0.3767162287387105,
|
1554 |
+
"learning_rate": 2.6956054438826918e-06,
|
1555 |
+
"loss": 0.8482,
|
1556 |
+
"step": 221
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 1.162729658792651,
|
1560 |
+
"grad_norm": 0.3486273740901837,
|
1561 |
+
"learning_rate": 2.668041954325498e-06,
|
1562 |
+
"loss": 0.8879,
|
1563 |
+
"step": 222
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 1.167979002624672,
|
1567 |
+
"grad_norm": 0.39084218665366566,
|
1568 |
+
"learning_rate": 2.640506806215351e-06,
|
1569 |
+
"loss": 0.8679,
|
1570 |
+
"step": 223
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 1.1732283464566928,
|
1574 |
+
"grad_norm": 0.3538552501730603,
|
1575 |
+
"learning_rate": 2.613002350409391e-06,
|
1576 |
+
"loss": 0.8871,
|
1577 |
+
"step": 224
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 1.178477690288714,
|
1581 |
+
"grad_norm": 0.36544200913577,
|
1582 |
+
"learning_rate": 2.585530935144354e-06,
|
1583 |
+
"loss": 0.8616,
|
1584 |
+
"step": 225
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 1.1837270341207349,
|
1588 |
+
"grad_norm": 0.3985990462573467,
|
1589 |
+
"learning_rate": 2.558094905836087e-06,
|
1590 |
+
"loss": 0.8917,
|
1591 |
+
"step": 226
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 1.188976377952756,
|
1595 |
+
"grad_norm": 0.42608518999556655,
|
1596 |
+
"learning_rate": 2.5306966048793067e-06,
|
1597 |
+
"loss": 0.8817,
|
1598 |
+
"step": 227
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 1.194225721784777,
|
1602 |
+
"grad_norm": 0.37952769789031354,
|
1603 |
+
"learning_rate": 2.5033383714476097e-06,
|
1604 |
+
"loss": 0.8985,
|
1605 |
+
"step": 228
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 1.1994750656167978,
|
1609 |
+
"grad_norm": 0.40804864076806885,
|
1610 |
+
"learning_rate": 2.4760225412937633e-06,
|
1611 |
+
"loss": 0.9073,
|
1612 |
+
"step": 229
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 1.204724409448819,
|
1616 |
+
"grad_norm": 0.4167713152946991,
|
1617 |
+
"learning_rate": 2.4487514465502885e-06,
|
1618 |
+
"loss": 0.8566,
|
1619 |
+
"step": 230
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 1.20997375328084,
|
1623 |
+
"grad_norm": 0.4022153540631621,
|
1624 |
+
"learning_rate": 2.42152741553035e-06,
|
1625 |
+
"loss": 0.8713,
|
1626 |
+
"step": 231
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 1.2152230971128608,
|
1630 |
+
"grad_norm": 0.4222065137992956,
|
1631 |
+
"learning_rate": 2.39435277252897e-06,
|
1632 |
+
"loss": 0.9035,
|
1633 |
+
"step": 232
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 1.220472440944882,
|
1637 |
+
"grad_norm": 0.3666365807384159,
|
1638 |
+
"learning_rate": 2.3672298376245908e-06,
|
1639 |
+
"loss": 0.8637,
|
1640 |
+
"step": 233
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 1.2257217847769029,
|
1644 |
+
"grad_norm": 0.3976853335036615,
|
1645 |
+
"learning_rate": 2.3401609264809953e-06,
|
1646 |
+
"loss": 0.9398,
|
1647 |
+
"step": 234
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 1.2309711286089238,
|
1651 |
+
"grad_norm": 0.37956934109451046,
|
1652 |
+
"learning_rate": 2.3131483501495985e-06,
|
1653 |
+
"loss": 0.8353,
|
1654 |
+
"step": 235
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 1.236220472440945,
|
1658 |
+
"grad_norm": 0.33722056538083744,
|
1659 |
+
"learning_rate": 2.2861944148721446e-06,
|
1660 |
+
"loss": 0.8786,
|
1661 |
+
"step": 236
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 1.2414698162729658,
|
1665 |
+
"grad_norm": 0.49777382093647954,
|
1666 |
+
"learning_rate": 2.2593014218838e-06,
|
1667 |
+
"loss": 0.8834,
|
1668 |
+
"step": 237
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 1.246719160104987,
|
1672 |
+
"grad_norm": 0.35315516410389436,
|
1673 |
+
"learning_rate": 2.232471667216693e-06,
|
1674 |
+
"loss": 0.8442,
|
1675 |
+
"step": 238
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 1.2519685039370079,
|
1679 |
+
"grad_norm": 0.3816124424363711,
|
1680 |
+
"learning_rate": 2.2057074415038725e-06,
|
1681 |
+
"loss": 0.8573,
|
1682 |
+
"step": 239
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 1.257217847769029,
|
1686 |
+
"grad_norm": 0.36319142999803095,
|
1687 |
+
"learning_rate": 2.1790110297837514e-06,
|
1688 |
+
"loss": 0.8481,
|
1689 |
+
"step": 240
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 1.26246719160105,
|
1693 |
+
"grad_norm": 0.34672889281207053,
|
1694 |
+
"learning_rate": 2.152384711305015e-06,
|
1695 |
+
"loss": 0.8623,
|
1696 |
+
"step": 241
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 1.2677165354330708,
|
1700 |
+
"grad_norm": 0.37448151544392105,
|
1701 |
+
"learning_rate": 2.1258307593320262e-06,
|
1702 |
+
"loss": 0.8751,
|
1703 |
+
"step": 242
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 1.272965879265092,
|
1707 |
+
"grad_norm": 0.37082567424502005,
|
1708 |
+
"learning_rate": 2.099351440950742e-06,
|
1709 |
+
"loss": 0.8914,
|
1710 |
+
"step": 243
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 1.2782152230971129,
|
1714 |
+
"grad_norm": 0.39074992783073415,
|
1715 |
+
"learning_rate": 2.072949016875158e-06,
|
1716 |
+
"loss": 0.9222,
|
1717 |
+
"step": 244
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 1.2834645669291338,
|
1721 |
+
"grad_norm": 0.4150437401629804,
|
1722 |
+
"learning_rate": 2.046625741254295e-06,
|
1723 |
+
"loss": 0.9475,
|
1724 |
+
"step": 245
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 1.288713910761155,
|
1728 |
+
"grad_norm": 0.4504166670407193,
|
1729 |
+
"learning_rate": 2.0203838614797505e-06,
|
1730 |
+
"loss": 0.9026,
|
1731 |
+
"step": 246
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 1.2939632545931758,
|
1735 |
+
"grad_norm": 0.38345958484903814,
|
1736 |
+
"learning_rate": 1.994225617993819e-06,
|
1737 |
+
"loss": 0.9074,
|
1738 |
+
"step": 247
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 1.2992125984251968,
|
1742 |
+
"grad_norm": 0.37086048031752866,
|
1743 |
+
"learning_rate": 1.9681532440982154e-06,
|
1744 |
+
"loss": 0.8755,
|
1745 |
+
"step": 248
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 1.304461942257218,
|
1749 |
+
"grad_norm": 0.3775524407980251,
|
1750 |
+
"learning_rate": 1.942168965763402e-06,
|
1751 |
+
"loss": 0.8986,
|
1752 |
+
"step": 249
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 1.3097112860892388,
|
1756 |
+
"grad_norm": 0.364796377340789,
|
1757 |
+
"learning_rate": 1.916275001438541e-06,
|
1758 |
+
"loss": 0.867,
|
1759 |
+
"step": 250
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"epoch": 1.3149606299212597,
|
1763 |
+
"grad_norm": 0.3705604843330414,
|
1764 |
+
"learning_rate": 1.8904735618620928e-06,
|
1765 |
+
"loss": 0.8875,
|
1766 |
+
"step": 251
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 1.3202099737532809,
|
1770 |
+
"grad_norm": 0.3847344001283667,
|
1771 |
+
"learning_rate": 1.8647668498730693e-06,
|
1772 |
+
"loss": 0.8678,
|
1773 |
+
"step": 252
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 1.3254593175853018,
|
1777 |
+
"grad_norm": 0.3507183610862785,
|
1778 |
+
"learning_rate": 1.8391570602229647e-06,
|
1779 |
+
"loss": 0.8895,
|
1780 |
+
"step": 253
|
1781 |
+
},
|
1782 |
+
{
|
1783 |
+
"epoch": 1.330708661417323,
|
1784 |
+
"grad_norm": 0.34464955572346173,
|
1785 |
+
"learning_rate": 1.8136463793883725e-06,
|
1786 |
+
"loss": 0.9112,
|
1787 |
+
"step": 254
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 1.3359580052493438,
|
1791 |
+
"grad_norm": 0.3804540728076062,
|
1792 |
+
"learning_rate": 1.7882369853843155e-06,
|
1793 |
+
"loss": 0.8818,
|
1794 |
+
"step": 255
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 1.341207349081365,
|
1798 |
+
"grad_norm": 0.38671544491057547,
|
1799 |
+
"learning_rate": 1.76293104757829e-06,
|
1800 |
+
"loss": 0.8712,
|
1801 |
+
"step": 256
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 1.3464566929133859,
|
1805 |
+
"grad_norm": 0.35028636565033566,
|
1806 |
+
"learning_rate": 1.7377307265050559e-06,
|
1807 |
+
"loss": 0.8795,
|
1808 |
+
"step": 257
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 1.3517060367454068,
|
1812 |
+
"grad_norm": 0.3596694021401425,
|
1813 |
+
"learning_rate": 1.7126381736821732e-06,
|
1814 |
+
"loss": 0.8791,
|
1815 |
+
"step": 258
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 1.356955380577428,
|
1819 |
+
"grad_norm": 0.3833574983214166,
|
1820 |
+
"learning_rate": 1.6876555314263213e-06,
|
1821 |
+
"loss": 0.9108,
|
1822 |
+
"step": 259
|
1823 |
+
},
|
1824 |
+
{
|
1825 |
+
"epoch": 1.3622047244094488,
|
1826 |
+
"grad_norm": 0.3701840047085969,
|
1827 |
+
"learning_rate": 1.6627849326703855e-06,
|
1828 |
+
"loss": 0.8695,
|
1829 |
+
"step": 260
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 1.3674540682414698,
|
1833 |
+
"grad_norm": 0.36098816535443995,
|
1834 |
+
"learning_rate": 1.6380285007813598e-06,
|
1835 |
+
"loss": 0.876,
|
1836 |
+
"step": 261
|
1837 |
+
},
|
1838 |
+
{
|
1839 |
+
"epoch": 1.372703412073491,
|
1840 |
+
"grad_norm": 0.3900890284585014,
|
1841 |
+
"learning_rate": 1.6133883493790609e-06,
|
1842 |
+
"loss": 0.8498,
|
1843 |
+
"step": 262
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"epoch": 1.3779527559055118,
|
1847 |
+
"grad_norm": 0.34906551126755136,
|
1848 |
+
"learning_rate": 1.5888665821556724e-06,
|
1849 |
+
"loss": 0.8513,
|
1850 |
+
"step": 263
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 1.3832020997375327,
|
1854 |
+
"grad_norm": 0.3753732283477496,
|
1855 |
+
"learning_rate": 1.5644652926961407e-06,
|
1856 |
+
"loss": 0.8714,
|
1857 |
+
"step": 264
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 1.3884514435695539,
|
1861 |
+
"grad_norm": 0.34748864593560347,
|
1862 |
+
"learning_rate": 1.5401865642994315e-06,
|
1863 |
+
"loss": 0.9124,
|
1864 |
+
"step": 265
|
1865 |
+
},
|
1866 |
+
{
|
1867 |
+
"epoch": 1.3937007874015748,
|
1868 |
+
"grad_norm": 0.36698053817770165,
|
1869 |
+
"learning_rate": 1.5160324698006642e-06,
|
1870 |
+
"loss": 0.8814,
|
1871 |
+
"step": 266
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"epoch": 1.3989501312335957,
|
1875 |
+
"grad_norm": 0.4000964153653425,
|
1876 |
+
"learning_rate": 1.4920050713941398e-06,
|
1877 |
+
"loss": 0.9082,
|
1878 |
+
"step": 267
|
1879 |
+
},
|
1880 |
+
{
|
1881 |
+
"epoch": 1.4041994750656168,
|
1882 |
+
"grad_norm": 0.3985391177875817,
|
1883 |
+
"learning_rate": 1.4681064204572798e-06,
|
1884 |
+
"loss": 0.8749,
|
1885 |
+
"step": 268
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"epoch": 1.4094488188976377,
|
1889 |
+
"grad_norm": 0.3578122677174226,
|
1890 |
+
"learning_rate": 1.4443385573754837e-06,
|
1891 |
+
"loss": 0.8608,
|
1892 |
+
"step": 269
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 1.4146981627296589,
|
1896 |
+
"grad_norm": 0.3576093239254431,
|
1897 |
+
"learning_rate": 1.4207035113679322e-06,
|
1898 |
+
"loss": 0.8798,
|
1899 |
+
"step": 270
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 1.4199475065616798,
|
1903 |
+
"grad_norm": 0.35299639204379674,
|
1904 |
+
"learning_rate": 1.3972033003143348e-06,
|
1905 |
+
"loss": 0.8972,
|
1906 |
+
"step": 271
|
1907 |
+
},
|
1908 |
+
{
|
1909 |
+
"epoch": 1.425196850393701,
|
1910 |
+
"grad_norm": 0.3937775289907907,
|
1911 |
+
"learning_rate": 1.3738399305826516e-06,
|
1912 |
+
"loss": 0.8736,
|
1913 |
+
"step": 272
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 1.4304461942257218,
|
1917 |
+
"grad_norm": 0.3691998032129419,
|
1918 |
+
"learning_rate": 1.3506153968577983e-06,
|
1919 |
+
"loss": 0.8667,
|
1920 |
+
"step": 273
|
1921 |
+
},
|
1922 |
+
{
|
1923 |
+
"epoch": 1.4356955380577427,
|
1924 |
+
"grad_norm": 0.35764876894907843,
|
1925 |
+
"learning_rate": 1.3275316819713435e-06,
|
1926 |
+
"loss": 0.882,
|
1927 |
+
"step": 274
|
1928 |
+
},
|
1929 |
+
{
|
1930 |
+
"epoch": 1.4409448818897639,
|
1931 |
+
"grad_norm": 0.3859579688778526,
|
1932 |
+
"learning_rate": 1.3045907567322243e-06,
|
1933 |
+
"loss": 0.844,
|
1934 |
+
"step": 275
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 1.4461942257217848,
|
1938 |
+
"grad_norm": 0.3736621084680505,
|
1939 |
+
"learning_rate": 1.2817945797584844e-06,
|
1940 |
+
"loss": 0.8525,
|
1941 |
+
"step": 276
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 1.4514435695538057,
|
1945 |
+
"grad_norm": 0.36602372507940695,
|
1946 |
+
"learning_rate": 1.2591450973100532e-06,
|
1947 |
+
"loss": 0.8577,
|
1948 |
+
"step": 277
|
1949 |
+
},
|
1950 |
+
{
|
1951 |
+
"epoch": 1.4566929133858268,
|
1952 |
+
"grad_norm": 0.37926054124030645,
|
1953 |
+
"learning_rate": 1.236644243122581e-06,
|
1954 |
+
"loss": 0.8837,
|
1955 |
+
"step": 278
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"epoch": 1.4619422572178478,
|
1959 |
+
"grad_norm": 0.3680022216795608,
|
1960 |
+
"learning_rate": 1.214293938242344e-06,
|
1961 |
+
"loss": 0.8984,
|
1962 |
+
"step": 279
|
1963 |
+
},
|
1964 |
+
{
|
1965 |
+
"epoch": 1.4671916010498687,
|
1966 |
+
"grad_norm": 0.37824901927870175,
|
1967 |
+
"learning_rate": 1.1920960908622313e-06,
|
1968 |
+
"loss": 0.8745,
|
1969 |
+
"step": 280
|
1970 |
+
},
|
1971 |
+
{
|
1972 |
+
"epoch": 1.4724409448818898,
|
1973 |
+
"grad_norm": 0.3489273490529577,
|
1974 |
+
"learning_rate": 1.17005259615883e-06,
|
1975 |
+
"loss": 0.8628,
|
1976 |
+
"step": 281
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 1.4776902887139107,
|
1980 |
+
"grad_norm": 0.3735770062938505,
|
1981 |
+
"learning_rate": 1.1481653361306215e-06,
|
1982 |
+
"loss": 0.8619,
|
1983 |
+
"step": 282
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 1.4829396325459316,
|
1987 |
+
"grad_norm": 0.3458041443504503,
|
1988 |
+
"learning_rate": 1.1264361794373032e-06,
|
1989 |
+
"loss": 0.8761,
|
1990 |
+
"step": 283
|
1991 |
+
},
|
1992 |
+
{
|
1993 |
+
"epoch": 1.4881889763779528,
|
1994 |
+
"grad_norm": 0.35998420937846626,
|
1995 |
+
"learning_rate": 1.104866981240248e-06,
|
1996 |
+
"loss": 0.8844,
|
1997 |
+
"step": 284
|
1998 |
+
},
|
1999 |
+
{
|
2000 |
+
"epoch": 1.4934383202099737,
|
2001 |
+
"grad_norm": 0.4029178073367971,
|
2002 |
+
"learning_rate": 1.0834595830441168e-06,
|
2003 |
+
"loss": 0.8511,
|
2004 |
+
"step": 285
|
2005 |
+
},
|
2006 |
+
{
|
2007 |
+
"epoch": 1.4986876640419948,
|
2008 |
+
"grad_norm": 0.3763622650814437,
|
2009 |
+
"learning_rate": 1.0622158125396387e-06,
|
2010 |
+
"loss": 0.8599,
|
2011 |
+
"step": 286
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"epoch": 1.5039370078740157,
|
2015 |
+
"grad_norm": 0.3845965137728459,
|
2016 |
+
"learning_rate": 1.0411374834475678e-06,
|
2017 |
+
"loss": 0.9062,
|
2018 |
+
"step": 287
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 1.5091863517060369,
|
2022 |
+
"grad_norm": 0.34964825506869784,
|
2023 |
+
"learning_rate": 1.020226395363833e-06,
|
2024 |
+
"loss": 0.8525,
|
2025 |
+
"step": 288
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 1.5144356955380578,
|
2029 |
+
"grad_norm": 0.38214019455395715,
|
2030 |
+
"learning_rate": 9.994843336058968e-07,
|
2031 |
+
"loss": 0.8686,
|
2032 |
+
"step": 289
|
2033 |
+
},
|
2034 |
+
{
|
2035 |
+
"epoch": 1.5196850393700787,
|
2036 |
+
"grad_norm": 0.3808975526218143,
|
2037 |
+
"learning_rate": 9.789130690603284e-07,
|
2038 |
+
"loss": 0.8537,
|
2039 |
+
"step": 290
|
2040 |
+
},
|
2041 |
+
{
|
2042 |
+
"epoch": 1.5249343832020998,
|
2043 |
+
"grad_norm": 0.3761982373529746,
|
2044 |
+
"learning_rate": 9.585143580316153e-07,
|
2045 |
+
"loss": 0.8826,
|
2046 |
+
"step": 291
|
2047 |
+
},
|
2048 |
+
{
|
2049 |
+
"epoch": 1.5301837270341208,
|
2050 |
+
"grad_norm": 0.351389916026518,
|
2051 |
+
"learning_rate": 9.382899420922119e-07,
|
2052 |
+
"loss": 0.8683,
|
2053 |
+
"step": 292
|
2054 |
+
},
|
2055 |
+
{
|
2056 |
+
"epoch": 1.5354330708661417,
|
2057 |
+
"grad_norm": 0.3711139029247798,
|
2058 |
+
"learning_rate": 9.182415479338512e-07,
|
2059 |
+
"loss": 0.8878,
|
2060 |
+
"step": 293
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 1.5406824146981628,
|
2064 |
+
"grad_norm": 0.3717732780588312,
|
2065 |
+
"learning_rate": 8.983708872201271e-07,
|
2066 |
+
"loss": 0.8585,
|
2067 |
+
"step": 294
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 1.5459317585301837,
|
2071 |
+
"grad_norm": 0.3742271193984993,
|
2072 |
+
"learning_rate": 8.786796564403577e-07,
|
2073 |
+
"loss": 0.8579,
|
2074 |
+
"step": 295
|
2075 |
+
},
|
2076 |
+
{
|
2077 |
+
"epoch": 1.5511811023622046,
|
2078 |
+
"grad_norm": 0.42523434659053005,
|
2079 |
+
"learning_rate": 8.591695367647433e-07,
|
2080 |
+
"loss": 0.8746,
|
2081 |
+
"step": 296
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"epoch": 1.5564304461942258,
|
2085 |
+
"grad_norm": 0.3794388162880317,
|
2086 |
+
"learning_rate": 8.398421939008367e-07,
|
2087 |
+
"loss": 0.8479,
|
2088 |
+
"step": 297
|
2089 |
+
},
|
2090 |
+
{
|
2091 |
+
"epoch": 1.5616797900262467,
|
2092 |
+
"grad_norm": 0.3588910082794427,
|
2093 |
+
"learning_rate": 8.206992779513281e-07,
|
2094 |
+
"loss": 0.8329,
|
2095 |
+
"step": 298
|
2096 |
+
},
|
2097 |
+
{
|
2098 |
+
"epoch": 1.5669291338582676,
|
2099 |
+
"grad_norm": 0.37000389491476643,
|
2100 |
+
"learning_rate": 8.017424232731664e-07,
|
2101 |
+
"loss": 0.8693,
|
2102 |
+
"step": 299
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 1.5721784776902887,
|
2106 |
+
"grad_norm": 0.4003207798760719,
|
2107 |
+
"learning_rate": 7.829732483380231e-07,
|
2108 |
+
"loss": 0.8886,
|
2109 |
+
"step": 300
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 1.5774278215223099,
|
2113 |
+
"grad_norm": 0.37170546863230536,
|
2114 |
+
"learning_rate": 7.64393355594112e-07,
|
2115 |
+
"loss": 0.9035,
|
2116 |
+
"step": 301
|
2117 |
+
},
|
2118 |
+
{
|
2119 |
+
"epoch": 1.5826771653543306,
|
2120 |
+
"grad_norm": 0.35766484669954807,
|
2121 |
+
"learning_rate": 7.4600433132938e-07,
|
2122 |
+
"loss": 0.848,
|
2123 |
+
"step": 302
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"epoch": 1.5879265091863517,
|
2127 |
+
"grad_norm": 0.33788894124632585,
|
2128 |
+
"learning_rate": 7.278077455360717e-07,
|
2129 |
+
"loss": 0.8545,
|
2130 |
+
"step": 303
|
2131 |
+
},
|
2132 |
+
{
|
2133 |
+
"epoch": 1.5931758530183728,
|
2134 |
+
"grad_norm": 0.36604275227388566,
|
2135 |
+
"learning_rate": 7.09805151776691e-07,
|
2136 |
+
"loss": 0.8415,
|
2137 |
+
"step": 304
|
2138 |
+
},
|
2139 |
+
{
|
2140 |
+
"epoch": 1.5984251968503937,
|
2141 |
+
"grad_norm": 0.33845675028801603,
|
2142 |
+
"learning_rate": 6.919980870513633e-07,
|
2143 |
+
"loss": 0.8472,
|
2144 |
+
"step": 305
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 1.6036745406824147,
|
2148 |
+
"grad_norm": 0.35701657873038517,
|
2149 |
+
"learning_rate": 6.743880716666104e-07,
|
2150 |
+
"loss": 0.8496,
|
2151 |
+
"step": 306
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 1.6089238845144358,
|
2155 |
+
"grad_norm": 0.3779107207471187,
|
2156 |
+
"learning_rate": 6.569766091055539e-07,
|
2157 |
+
"loss": 0.8495,
|
2158 |
+
"step": 307
|
2159 |
+
},
|
2160 |
+
{
|
2161 |
+
"epoch": 1.6141732283464567,
|
2162 |
+
"grad_norm": 0.3872432739805792,
|
2163 |
+
"learning_rate": 6.397651858995504e-07,
|
2164 |
+
"loss": 0.851,
|
2165 |
+
"step": 308
|
2166 |
+
},
|
2167 |
+
{
|
2168 |
+
"epoch": 1.6194225721784776,
|
2169 |
+
"grad_norm": 0.3595059488828886,
|
2170 |
+
"learning_rate": 6.227552715012785e-07,
|
2171 |
+
"loss": 0.8855,
|
2172 |
+
"step": 309
|
2173 |
+
},
|
2174 |
+
{
|
2175 |
+
"epoch": 1.6246719160104988,
|
2176 |
+
"grad_norm": 0.37515207797149636,
|
2177 |
+
"learning_rate": 6.059483181592815e-07,
|
2178 |
+
"loss": 0.8858,
|
2179 |
+
"step": 310
|
2180 |
+
},
|
2181 |
+
{
|
2182 |
+
"epoch": 1.6299212598425197,
|
2183 |
+
"grad_norm": 0.3629206169447269,
|
2184 |
+
"learning_rate": 5.893457607939788e-07,
|
2185 |
+
"loss": 0.8807,
|
2186 |
+
"step": 311
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 1.6351706036745406,
|
2190 |
+
"grad_norm": 0.3545486266254271,
|
2191 |
+
"learning_rate": 5.72949016875158e-07,
|
2192 |
+
"loss": 0.8955,
|
2193 |
+
"step": 312
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 1.6404199475065617,
|
2197 |
+
"grad_norm": 0.3432909080087375,
|
2198 |
+
"learning_rate": 5.56759486300955e-07,
|
2199 |
+
"loss": 0.8681,
|
2200 |
+
"step": 313
|
2201 |
+
},
|
2202 |
+
{
|
2203 |
+
"epoch": 1.6456692913385826,
|
2204 |
+
"grad_norm": 0.3639385301913205,
|
2205 |
+
"learning_rate": 5.40778551278337e-07,
|
2206 |
+
"loss": 0.8733,
|
2207 |
+
"step": 314
|
2208 |
+
},
|
2209 |
+
{
|
2210 |
+
"epoch": 1.6509186351706036,
|
2211 |
+
"grad_norm": 0.38920489291790045,
|
2212 |
+
"learning_rate": 5.250075762050935e-07,
|
2213 |
+
"loss": 0.8745,
|
2214 |
+
"step": 315
|
2215 |
+
},
|
2216 |
+
{
|
2217 |
+
"epoch": 1.6561679790026247,
|
2218 |
+
"grad_norm": 0.3618641411341515,
|
2219 |
+
"learning_rate": 5.094479075533486e-07,
|
2220 |
+
"loss": 0.8832,
|
2221 |
+
"step": 316
|
2222 |
+
},
|
2223 |
+
{
|
2224 |
+
"epoch": 1.6614173228346458,
|
2225 |
+
"grad_norm": 0.38194003303963936,
|
2226 |
+
"learning_rate": 4.941008737546039e-07,
|
2227 |
+
"loss": 0.882,
|
2228 |
+
"step": 317
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 1.6666666666666665,
|
2232 |
+
"grad_norm": 0.36004508832846943,
|
2233 |
+
"learning_rate": 4.789677850863222e-07,
|
2234 |
+
"loss": 0.8754,
|
2235 |
+
"step": 318
|
2236 |
+
},
|
2237 |
+
{
|
2238 |
+
"epoch": 1.6719160104986877,
|
2239 |
+
"grad_norm": 0.3713147294795857,
|
2240 |
+
"learning_rate": 4.6404993356005967e-07,
|
2241 |
+
"loss": 0.8496,
|
2242 |
+
"step": 319
|
2243 |
+
},
|
2244 |
+
{
|
2245 |
+
"epoch": 1.6771653543307088,
|
2246 |
+
"grad_norm": 0.40332844918244803,
|
2247 |
+
"learning_rate": 4.4934859281115804e-07,
|
2248 |
+
"loss": 0.8985,
|
2249 |
+
"step": 320
|
2250 |
+
},
|
2251 |
+
{
|
2252 |
+
"epoch": 1.6824146981627297,
|
2253 |
+
"grad_norm": 0.37460256078858306,
|
2254 |
+
"learning_rate": 4.34865017990007e-07,
|
2255 |
+
"loss": 0.8997,
|
2256 |
+
"step": 321
|
2257 |
+
},
|
2258 |
+
{
|
2259 |
+
"epoch": 1.6876640419947506,
|
2260 |
+
"grad_norm": 0.34681859755129757,
|
2261 |
+
"learning_rate": 4.2060044565488264e-07,
|
2262 |
+
"loss": 0.8596,
|
2263 |
+
"step": 322
|
2264 |
+
},
|
2265 |
+
{
|
2266 |
+
"epoch": 1.6929133858267718,
|
2267 |
+
"grad_norm": 0.36407790059697526,
|
2268 |
+
"learning_rate": 4.0655609366637635e-07,
|
2269 |
+
"loss": 0.8891,
|
2270 |
+
"step": 323
|
2271 |
+
},
|
2272 |
+
{
|
2273 |
+
"epoch": 1.6981627296587927,
|
2274 |
+
"grad_norm": 0.38031424057937346,
|
2275 |
+
"learning_rate": 3.9273316108341493e-07,
|
2276 |
+
"loss": 0.9026,
|
2277 |
+
"step": 324
|
2278 |
+
},
|
2279 |
+
{
|
2280 |
+
"epoch": 1.7034120734908136,
|
2281 |
+
"grad_norm": 0.37078158732866173,
|
2282 |
+
"learning_rate": 3.791328280608916e-07,
|
2283 |
+
"loss": 0.8676,
|
2284 |
+
"step": 325
|
2285 |
+
},
|
2286 |
+
{
|
2287 |
+
"epoch": 1.7086614173228347,
|
2288 |
+
"grad_norm": 0.3744777105843697,
|
2289 |
+
"learning_rate": 3.657562557489063e-07,
|
2290 |
+
"loss": 0.8692,
|
2291 |
+
"step": 326
|
2292 |
+
},
|
2293 |
+
{
|
2294 |
+
"epoch": 1.7139107611548556,
|
2295 |
+
"grad_norm": 0.35275476224983093,
|
2296 |
+
"learning_rate": 3.52604586193633e-07,
|
2297 |
+
"loss": 0.878,
|
2298 |
+
"step": 327
|
2299 |
+
},
|
2300 |
+
{
|
2301 |
+
"epoch": 1.7191601049868765,
|
2302 |
+
"grad_norm": 0.3845721220969486,
|
2303 |
+
"learning_rate": 3.396789422398143e-07,
|
2304 |
+
"loss": 0.8715,
|
2305 |
+
"step": 328
|
2306 |
+
},
|
2307 |
+
{
|
2308 |
+
"epoch": 1.7244094488188977,
|
2309 |
+
"grad_norm": 0.38567935425060995,
|
2310 |
+
"learning_rate": 3.269804274348966e-07,
|
2311 |
+
"loss": 0.8552,
|
2312 |
+
"step": 329
|
2313 |
+
},
|
2314 |
+
{
|
2315 |
+
"epoch": 1.7296587926509186,
|
2316 |
+
"grad_norm": 0.36984914245968326,
|
2317 |
+
"learning_rate": 3.145101259348133e-07,
|
2318 |
+
"loss": 0.8905,
|
2319 |
+
"step": 330
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"epoch": 1.7349081364829395,
|
2323 |
+
"grad_norm": 0.3862126346234947,
|
2324 |
+
"learning_rate": 3.022691024114234e-07,
|
2325 |
+
"loss": 0.8759,
|
2326 |
+
"step": 331
|
2327 |
+
},
|
2328 |
+
{
|
2329 |
+
"epoch": 1.7401574803149606,
|
2330 |
+
"grad_norm": 0.37276644156643624,
|
2331 |
+
"learning_rate": 2.9025840196161345e-07,
|
2332 |
+
"loss": 0.8996,
|
2333 |
+
"step": 332
|
2334 |
+
},
|
2335 |
+
{
|
2336 |
+
"epoch": 1.7454068241469818,
|
2337 |
+
"grad_norm": 0.3619714746103851,
|
2338 |
+
"learning_rate": 2.784790500180704e-07,
|
2339 |
+
"loss": 0.8734,
|
2340 |
+
"step": 333
|
2341 |
+
},
|
2342 |
+
{
|
2343 |
+
"epoch": 1.7506561679790025,
|
2344 |
+
"grad_norm": 0.3489848842196673,
|
2345 |
+
"learning_rate": 2.6693205226173466e-07,
|
2346 |
+
"loss": 0.852,
|
2347 |
+
"step": 334
|
2348 |
+
},
|
2349 |
+
{
|
2350 |
+
"epoch": 1.7559055118110236,
|
2351 |
+
"grad_norm": 0.47292345630417715,
|
2352 |
+
"learning_rate": 2.556183945359369e-07,
|
2353 |
+
"loss": 0.8524,
|
2354 |
+
"step": 335
|
2355 |
+
},
|
2356 |
+
{
|
2357 |
+
"epoch": 1.7611548556430447,
|
2358 |
+
"grad_norm": 0.3454751472880757,
|
2359 |
+
"learning_rate": 2.4453904276223093e-07,
|
2360 |
+
"loss": 0.8639,
|
2361 |
+
"step": 336
|
2362 |
+
},
|
2363 |
+
{
|
2364 |
+
"epoch": 1.7664041994750657,
|
2365 |
+
"grad_norm": 0.39520326916346893,
|
2366 |
+
"learning_rate": 2.3369494285792648e-07,
|
2367 |
+
"loss": 0.9011,
|
2368 |
+
"step": 337
|
2369 |
+
},
|
2370 |
+
{
|
2371 |
+
"epoch": 1.7716535433070866,
|
2372 |
+
"grad_norm": 0.36215879824858,
|
2373 |
+
"learning_rate": 2.2308702065533138e-07,
|
2374 |
+
"loss": 0.8475,
|
2375 |
+
"step": 338
|
2376 |
+
},
|
2377 |
+
{
|
2378 |
+
"epoch": 1.7769028871391077,
|
2379 |
+
"grad_norm": 0.3785025816595213,
|
2380 |
+
"learning_rate": 2.1271618182270402e-07,
|
2381 |
+
"loss": 0.8785,
|
2382 |
+
"step": 339
|
2383 |
+
},
|
2384 |
+
{
|
2385 |
+
"epoch": 1.7821522309711286,
|
2386 |
+
"grad_norm": 0.35017564001831825,
|
2387 |
+
"learning_rate": 2.0258331178693291e-07,
|
2388 |
+
"loss": 0.9251,
|
2389 |
+
"step": 340
|
2390 |
+
},
|
2391 |
+
{
|
2392 |
+
"epoch": 1.7874015748031495,
|
2393 |
+
"grad_norm": 0.3736191583691154,
|
2394 |
+
"learning_rate": 1.926892756579427e-07,
|
2395 |
+
"loss": 0.8638,
|
2396 |
+
"step": 341
|
2397 |
+
},
|
2398 |
+
{
|
2399 |
+
"epoch": 1.7926509186351707,
|
2400 |
+
"grad_norm": 0.3542533426451256,
|
2401 |
+
"learning_rate": 1.8303491815483076e-07,
|
2402 |
+
"loss": 0.8501,
|
2403 |
+
"step": 342
|
2404 |
+
},
|
2405 |
+
{
|
2406 |
+
"epoch": 1.7979002624671916,
|
2407 |
+
"grad_norm": 0.3653513060765524,
|
2408 |
+
"learning_rate": 1.7362106353375107e-07,
|
2409 |
+
"loss": 0.8704,
|
2410 |
+
"step": 343
|
2411 |
+
},
|
2412 |
+
{
|
2413 |
+
"epoch": 1.8031496062992125,
|
2414 |
+
"grad_norm": 0.3699565968914539,
|
2415 |
+
"learning_rate": 1.6444851551754158e-07,
|
2416 |
+
"loss": 0.8659,
|
2417 |
+
"step": 344
|
2418 |
+
},
|
2419 |
+
{
|
2420 |
+
"epoch": 1.8083989501312336,
|
2421 |
+
"grad_norm": 0.357867752615946,
|
2422 |
+
"learning_rate": 1.5551805722710245e-07,
|
2423 |
+
"loss": 0.8802,
|
2424 |
+
"step": 345
|
2425 |
+
},
|
2426 |
+
{
|
2427 |
+
"epoch": 1.8136482939632546,
|
2428 |
+
"grad_norm": 0.37125992932731333,
|
2429 |
+
"learning_rate": 1.4683045111453941e-07,
|
2430 |
+
"loss": 0.8368,
|
2431 |
+
"step": 346
|
2432 |
+
},
|
2433 |
+
{
|
2434 |
+
"epoch": 1.8188976377952755,
|
2435 |
+
"grad_norm": 0.3685836112400432,
|
2436 |
+
"learning_rate": 1.3838643889806568e-07,
|
2437 |
+
"loss": 0.9235,
|
2438 |
+
"step": 347
|
2439 |
+
},
|
2440 |
+
{
|
2441 |
+
"epoch": 1.8241469816272966,
|
2442 |
+
"grad_norm": 0.36408877164595227,
|
2443 |
+
"learning_rate": 1.3018674149867782e-07,
|
2444 |
+
"loss": 0.8799,
|
2445 |
+
"step": 348
|
2446 |
+
},
|
2447 |
+
{
|
2448 |
+
"epoch": 1.8293963254593177,
|
2449 |
+
"grad_norm": 0.3642144586766023,
|
2450 |
+
"learning_rate": 1.2223205897860533e-07,
|
2451 |
+
"loss": 0.8777,
|
2452 |
+
"step": 349
|
2453 |
+
},
|
2454 |
+
{
|
2455 |
+
"epoch": 1.8346456692913384,
|
2456 |
+
"grad_norm": 0.39073442531405206,
|
2457 |
+
"learning_rate": 1.1452307048154286e-07,
|
2458 |
+
"loss": 0.8797,
|
2459 |
+
"step": 350
|
2460 |
+
},
|
2461 |
+
{
|
2462 |
+
"epoch": 1.8398950131233596,
|
2463 |
+
"grad_norm": 0.3810371400467593,
|
2464 |
+
"learning_rate": 1.0706043417466549e-07,
|
2465 |
+
"loss": 0.91,
|
2466 |
+
"step": 351
|
2467 |
+
},
|
2468 |
+
{
|
2469 |
+
"epoch": 1.8451443569553807,
|
2470 |
+
"grad_norm": 0.35959663657652996,
|
2471 |
+
"learning_rate": 9.984478719243772e-08,
|
2472 |
+
"loss": 0.8714,
|
2473 |
+
"step": 352
|
2474 |
+
},
|
2475 |
+
{
|
2476 |
+
"epoch": 1.8503937007874016,
|
2477 |
+
"grad_norm": 0.36819474514599226,
|
2478 |
+
"learning_rate": 9.287674558221737e-08,
|
2479 |
+
"loss": 0.9048,
|
2480 |
+
"step": 353
|
2481 |
+
},
|
2482 |
+
{
|
2483 |
+
"epoch": 1.8556430446194225,
|
2484 |
+
"grad_norm": 0.3492451150451855,
|
2485 |
+
"learning_rate": 8.615690425165823e-08,
|
2486 |
+
"loss": 0.8589,
|
2487 |
+
"step": 354
|
2488 |
+
},
|
2489 |
+
{
|
2490 |
+
"epoch": 1.8608923884514437,
|
2491 |
+
"grad_norm": 0.3692991236824256,
|
2492 |
+
"learning_rate": 7.968583691792142e-08,
|
2493 |
+
"loss": 0.8502,
|
2494 |
+
"step": 355
|
2495 |
+
},
|
2496 |
+
{
|
2497 |
+
"epoch": 1.8661417322834646,
|
2498 |
+
"grad_norm": 0.36506034919430097,
|
2499 |
+
"learning_rate": 7.34640960586902e-08,
|
2500 |
+
"loss": 0.8948,
|
2501 |
+
"step": 356
|
2502 |
+
},
|
2503 |
+
{
|
2504 |
+
"epoch": 1.8713910761154855,
|
2505 |
+
"grad_norm": 0.39656772129331486,
|
2506 |
+
"learning_rate": 6.749221286500273e-08,
|
2507 |
+
"loss": 0.872,
|
2508 |
+
"step": 357
|
2509 |
+
},
|
2510 |
+
{
|
2511 |
+
"epoch": 1.8766404199475066,
|
2512 |
+
"grad_norm": 0.3766497135471153,
|
2513 |
+
"learning_rate": 6.177069719590234e-08,
|
2514 |
+
"loss": 0.8459,
|
2515 |
+
"step": 358
|
2516 |
+
},
|
2517 |
+
{
|
2518 |
+
"epoch": 1.8818897637795275,
|
2519 |
+
"grad_norm": 0.3420155942064905,
|
2520 |
+
"learning_rate": 5.6300037534904644e-08,
|
2521 |
+
"loss": 0.8797,
|
2522 |
+
"step": 359
|
2523 |
+
},
|
2524 |
+
{
|
2525 |
+
"epoch": 1.8871391076115485,
|
2526 |
+
"grad_norm": 0.3790798456525195,
|
2527 |
+
"learning_rate": 5.108070094829465e-08,
|
2528 |
+
"loss": 0.8374,
|
2529 |
+
"step": 360
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"epoch": 1.8923884514435696,
|
2533 |
+
"grad_norm": 0.36574760138577367,
|
2534 |
+
"learning_rate": 4.6113133045249225e-08,
|
2535 |
+
"loss": 0.8507,
|
2536 |
+
"step": 361
|
2537 |
+
},
|
2538 |
+
{
|
2539 |
+
"epoch": 1.8976377952755905,
|
2540 |
+
"grad_norm": 0.39215283711659366,
|
2541 |
+
"learning_rate": 4.139775793979228e-08,
|
2542 |
+
"loss": 0.9416,
|
2543 |
+
"step": 362
|
2544 |
+
},
|
2545 |
+
{
|
2546 |
+
"epoch": 1.9028871391076114,
|
2547 |
+
"grad_norm": 0.33743123097312766,
|
2548 |
+
"learning_rate": 3.693497821458702e-08,
|
2549 |
+
"loss": 0.8469,
|
2550 |
+
"step": 363
|
2551 |
+
},
|
2552 |
+
{
|
2553 |
+
"epoch": 1.9081364829396326,
|
2554 |
+
"grad_norm": 0.365685642660726,
|
2555 |
+
"learning_rate": 3.272517488656213e-08,
|
2556 |
+
"loss": 0.8809,
|
2557 |
+
"step": 364
|
2558 |
+
},
|
2559 |
+
{
|
2560 |
+
"epoch": 1.9133858267716537,
|
2561 |
+
"grad_norm": 0.35701737992686006,
|
2562 |
+
"learning_rate": 2.876870737438475e-08,
|
2563 |
+
"loss": 0.8576,
|
2564 |
+
"step": 365
|
2565 |
+
},
|
2566 |
+
{
|
2567 |
+
"epoch": 1.9186351706036744,
|
2568 |
+
"grad_norm": 0.4717726718121241,
|
2569 |
+
"learning_rate": 2.506591346777176e-08,
|
2570 |
+
"loss": 0.8882,
|
2571 |
+
"step": 366
|
2572 |
+
},
|
2573 |
+
{
|
2574 |
+
"epoch": 1.9238845144356955,
|
2575 |
+
"grad_norm": 0.3644123714802389,
|
2576 |
+
"learning_rate": 2.1617109298653126e-08,
|
2577 |
+
"loss": 0.8806,
|
2578 |
+
"step": 367
|
2579 |
+
},
|
2580 |
+
{
|
2581 |
+
"epoch": 1.9291338582677167,
|
2582 |
+
"grad_norm": 0.37039268056716995,
|
2583 |
+
"learning_rate": 1.842258931417917e-08,
|
2584 |
+
"loss": 0.8646,
|
2585 |
+
"step": 368
|
2586 |
+
},
|
2587 |
+
{
|
2588 |
+
"epoch": 1.9343832020997376,
|
2589 |
+
"grad_norm": 0.38307646079911417,
|
2590 |
+
"learning_rate": 1.5482626251583364e-08,
|
2591 |
+
"loss": 0.8605,
|
2592 |
+
"step": 369
|
2593 |
+
},
|
2594 |
+
{
|
2595 |
+
"epoch": 1.9396325459317585,
|
2596 |
+
"grad_norm": 0.34939756521186505,
|
2597 |
+
"learning_rate": 1.2797471114896598e-08,
|
2598 |
+
"loss": 0.8605,
|
2599 |
+
"step": 370
|
2600 |
+
},
|
2601 |
+
{
|
2602 |
+
"epoch": 1.9448818897637796,
|
2603 |
+
"grad_norm": 0.3630644212614912,
|
2604 |
+
"learning_rate": 1.0367353153516335e-08,
|
2605 |
+
"loss": 0.8874,
|
2606 |
+
"step": 371
|
2607 |
+
},
|
2608 |
+
{
|
2609 |
+
"epoch": 1.9501312335958005,
|
2610 |
+
"grad_norm": 0.36486914850748925,
|
2611 |
+
"learning_rate": 8.192479842635937e-09,
|
2612 |
+
"loss": 0.8488,
|
2613 |
+
"step": 372
|
2614 |
+
},
|
2615 |
+
{
|
2616 |
+
"epoch": 1.9553805774278215,
|
2617 |
+
"grad_norm": 0.3477602485063963,
|
2618 |
+
"learning_rate": 6.273036865529158e-09,
|
2619 |
+
"loss": 0.8865,
|
2620 |
+
"step": 373
|
2621 |
+
},
|
2622 |
+
{
|
2623 |
+
"epoch": 1.9606299212598426,
|
2624 |
+
"grad_norm": 0.3699792979427579,
|
2625 |
+
"learning_rate": 4.6091880976981695e-09,
|
2626 |
+
"loss": 0.8552,
|
2627 |
+
"step": 374
|
2628 |
+
},
|
2629 |
+
{
|
2630 |
+
"epoch": 1.9658792650918635,
|
2631 |
+
"grad_norm": 0.36569117211522567,
|
2632 |
+
"learning_rate": 3.201075592882741e-09,
|
2633 |
+
"loss": 0.8771,
|
2634 |
+
"step": 375
|
2635 |
+
},
|
2636 |
+
{
|
2637 |
+
"epoch": 1.9711286089238844,
|
2638 |
+
"grad_norm": 0.3673522439384638,
|
2639 |
+
"learning_rate": 2.0488195709312816e-09,
|
2640 |
+
"loss": 0.8316,
|
2641 |
+
"step": 376
|
2642 |
+
},
|
2643 |
+
{
|
2644 |
+
"epoch": 1.9763779527559056,
|
2645 |
+
"grad_norm": 0.40741119157495514,
|
2646 |
+
"learning_rate": 1.152518407537717e-09,
|
2647 |
+
"loss": 0.8686,
|
2648 |
+
"step": 377
|
2649 |
+
},
|
2650 |
+
{
|
2651 |
+
"epoch": 1.9816272965879265,
|
2652 |
+
"grad_norm": 0.3922247762663656,
|
2653 |
+
"learning_rate": 5.122486258418713e-10,
|
2654 |
+
"loss": 0.88,
|
2655 |
+
"step": 378
|
2656 |
+
},
|
2657 |
+
{
|
2658 |
+
"epoch": 1.9868766404199474,
|
2659 |
+
"grad_norm": 0.36724366518491103,
|
2660 |
+
"learning_rate": 1.2806488989636211e-10,
|
2661 |
+
"loss": 0.863,
|
2662 |
+
"step": 379
|
2663 |
+
},
|
2664 |
+
{
|
2665 |
+
"epoch": 1.9921259842519685,
|
2666 |
+
"grad_norm": 0.37347664771694333,
|
2667 |
+
"learning_rate": 0.0,
|
2668 |
+
"loss": 0.8553,
|
2669 |
+
"step": 380
|
2670 |
+
}
|
2671 |
+
],
|
2672 |
+
"logging_steps": 1,
|
2673 |
+
"max_steps": 380,
|
2674 |
+
"num_input_tokens_seen": 0,
|
2675 |
+
"num_train_epochs": 2,
|
2676 |
+
"save_steps": 95,
|
2677 |
+
"stateful_callbacks": {
|
2678 |
+
"TrainerControl": {
|
2679 |
+
"args": {
|
2680 |
+
"should_epoch_stop": false,
|
2681 |
+
"should_evaluate": false,
|
2682 |
+
"should_log": false,
|
2683 |
+
"should_save": true,
|
2684 |
+
"should_training_stop": true
|
2685 |
+
},
|
2686 |
+
"attributes": {}
|
2687 |
+
}
|
2688 |
+
},
|
2689 |
+
"total_flos": 9.333503833071944e+17,
|
2690 |
+
"train_batch_size": 2,
|
2691 |
+
"trial_name": null,
|
2692 |
+
"trial_params": null
|
2693 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b860c7e838727b1a9d8001f5c7a769bd0d63566ea45620719245b6beb59f1cd9
|
3 |
+
size 8376
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|