Update README.md
Browse files
README.md
CHANGED
@@ -5,4 +5,48 @@ license_link: LICENSE
|
|
5 |
datasets:
|
6 |
- Major-TOM/Core-S2L2A
|
7 |
- Major-TOM/Core-DEM
|
8 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
datasets:
|
6 |
- Major-TOM/Core-S2L2A
|
7 |
- Major-TOM/Core-DEM
|
8 |
+
---
|
9 |
+
|
10 |
+
<h1 align="center">MESA: Text-Driven Terrain Generation Using Latent Diffusion and Global Copernicus Data </h1>
|
11 |
+
<p align="center"><a href="https://www.linkedin.com/in/paul-bp-cs/" target="_blank">Paul Borne--Pons</a>, <a href="https://mikonvergence.github.io/" target="_blank">Mikolaj Czerkawski</a>,<a href="https://research.adobe.com/person/rosalie-martin/" target="_blank">Rosalie Martin</a>,
|
12 |
+
<a href="https://research.adobe.com/person/romain-rouffet/" target="_blank">Romain Rouffet</a></p>
|
13 |
+
|
14 |
+
<p align="center"><a href="https://sites.google.com/view/morse2025" target="_blank">CVPR 2025 Workshop MORSE</a> </p>
|
15 |
+
<p align="center"><img src=assets/mesa-header-nz.png></p>
|
16 |
+
|
17 |
+
MESA is a novel generative model based on latent denoising diffusion capable of generating 2.5D representations of terrain based on the text prompt conditioning supplied via natural language. The model produces two co-registered modalities of optical and depth maps.
|
18 |
+
|
19 |
+
## Model Description
|
20 |
+
- **Paper:** [MESA: Text-Driven Terrain Generation Using Latent Diffusion and Global Copernicus Data](https://arxiv.org/abs/2504.07210)
|
21 |
+
- **Github:** <https://github.com/PaulBorneP/MESA>
|
22 |
+
- **Project page:**
|
23 |
+
- **License:** [Adobe License](https://huggingface.co/NewtNewt)
|
24 |
+
|
25 |
+
## Installation
|
26 |
+
```sh
|
27 |
+
# Clone the repository
|
28 |
+
git clone https://github.com/PaulBorneP/MESA.git
|
29 |
+
cd MESA
|
30 |
+
```
|
31 |
+
|
32 |
+
## Model Download
|
33 |
+
|
34 |
+
```sh
|
35 |
+
huggingface-cli download NewtNewt/MESA --local-dir ./weights
|
36 |
+
```
|
37 |
+
|
38 |
+
```latex
|
39 |
+
@inproceedings{mesa2025,
|
40 |
+
title={MESA: Text-Driven Terrain Generation Using Latent Diffusion and Global Copernicus Data},
|
41 |
+
author={Paul Borne--Pons and Mikolaj Czerkawski and Rosalie Martin and Romain Rouffet},
|
42 |
+
year={2025},
|
43 |
+
booktitle={MORSE Workshop at CVPR 2025},
|
44 |
+
eprint={2504.07210},
|
45 |
+
url={https://arxiv.org/abs/2504.07210},}
|
46 |
+
```
|
47 |
+
|
48 |
+
## Acknowledgements
|
49 |
+
|
50 |
+
This implementation builds upon Hugging Face’s [Diffusers](https://github.com/huggingface/diffusers) library. We also acknowledge [Gradio](https://www.gradio.app/) for providing an easy-to-use interface that allowed us to create the inference demos for our models.
|
51 |
+
|
52 |
+
This model is the product of a collaboration between [Φ-lab, European Space Agency (ESA)](https://philab.esa.int/) and the [Adobe Research (Paris, France)](https://research.adobe.com/careers/paris/).
|