Text-to-Image
Diffusers
Safetensors
StableDiffusionPipeline
NewtNewt commited on
Commit
0458da6
·
verified ·
1 Parent(s): f93b0b7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +45 -1
README.md CHANGED
@@ -5,4 +5,48 @@ license_link: LICENSE
5
  datasets:
6
  - Major-TOM/Core-S2L2A
7
  - Major-TOM/Core-DEM
8
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  datasets:
6
  - Major-TOM/Core-S2L2A
7
  - Major-TOM/Core-DEM
8
+ ---
9
+
10
+ <h1 align="center">MESA: Text-Driven Terrain Generation Using Latent Diffusion and Global Copernicus Data </h1>
11
+ <p align="center"><a href="https://www.linkedin.com/in/paul-bp-cs/" target="_blank">Paul Borne--Pons</a>, <a href="https://mikonvergence.github.io/" target="_blank">Mikolaj Czerkawski</a>,<a href="https://research.adobe.com/person/rosalie-martin/" target="_blank">Rosalie Martin</a>,
12
+ <a href="https://research.adobe.com/person/romain-rouffet/" target="_blank">Romain Rouffet</a></p>
13
+
14
+ <p align="center"><a href="https://sites.google.com/view/morse2025" target="_blank">CVPR 2025 Workshop MORSE</a> </p>
15
+ <p align="center"><img src=assets/mesa-header-nz.png></p>
16
+
17
+ MESA is a novel generative model based on latent denoising diffusion capable of generating 2.5D representations of terrain based on the text prompt conditioning supplied via natural language. The model produces two co-registered modalities of optical and depth maps.
18
+
19
+ ## Model Description
20
+ - **Paper:** [MESA: Text-Driven Terrain Generation Using Latent Diffusion and Global Copernicus Data](https://arxiv.org/abs/2504.07210)
21
+ - **Github:** <https://github.com/PaulBorneP/MESA>
22
+ - **Project page:**
23
+ - **License:** [Adobe License](https://huggingface.co/NewtNewt)
24
+
25
+ ## Installation
26
+ ```sh
27
+ # Clone the repository
28
+ git clone https://github.com/PaulBorneP/MESA.git
29
+ cd MESA
30
+ ```
31
+
32
+ ## Model Download
33
+
34
+ ```sh
35
+ huggingface-cli download NewtNewt/MESA --local-dir ./weights
36
+ ```
37
+
38
+ ```latex
39
+ @inproceedings{mesa2025,
40
+ title={MESA: Text-Driven Terrain Generation Using Latent Diffusion and Global Copernicus Data},
41
+ author={Paul Borne--Pons and Mikolaj Czerkawski and Rosalie Martin and Romain Rouffet},
42
+ year={2025},
43
+ booktitle={MORSE Workshop at CVPR 2025},
44
+ eprint={2504.07210},
45
+ url={https://arxiv.org/abs/2504.07210},}
46
+ ```
47
+
48
+ ## Acknowledgements
49
+
50
+ This implementation builds upon Hugging Face’s [Diffusers](https://github.com/huggingface/diffusers) library. We also acknowledge [Gradio](https://www.gradio.app/) for providing an easy-to-use interface that allowed us to create the inference demos for our models.
51
+
52
+ This model is the product of a collaboration between [Φ-lab, European Space Agency (ESA)](https://philab.esa.int/) and the [Adobe Research (Paris, France)](https://research.adobe.com/careers/paris/).